3D数学基础:矩阵

本文介绍了矩阵的基本概念,包括方阵、对角矩阵、单位矩阵、矩阵转置及矩阵乘法。讨论了矩阵乘法的特性,如不满足交换律但满足结合律,并阐述了矩阵如何作为坐标变换的工具。还提到了矩阵与向量的乘法规则,展示了矩阵如何通过基向量来表示坐标变换。
摘要由CSDN通过智能技术生成

矩阵

方阵

行数和列数相同的矩阵称作方阵。

方阵的对角线元素就是方阵中行号和列号相同的元素。其余元素均为非对角线元素。简单的说,方阵的对角线元素就是方阵对角线上的元素。

如果所有非对角线元素都为0,那么称这种矩阵为对角矩阵,例如:
[ 9 0 0 0 0 1 0 0 0 0 − 5 0 0 0 0 − 3 ] \begin{bmatrix} 9&0&0&0\\ 0&1&0&0\\ 0&0&-5&0\\ 0&0&0&-3 \end{bmatrix} 9000010000500003
单位矩阵是一种特殊的对角矩阵。n维单位矩阵记作 I n I_n In,对角线元素为1,其他元素为0。下面是一个 3 × 3 3\times 3 3×3的单位矩阵:
[ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix} 100010001
单位矩阵非常特殊,因为它是矩阵的乘法单位元。其基本性质是用任意一个矩阵乘以单位矩阵,都将得到原矩阵。

转置

考虑一个 r × c r\times c r×c矩阵MM的转置记作 M T M^T MT,是一个 c × r c\times r c×r矩阵,它的列由M的行组成。 M i j T = M j i M_{ij}^T=M_{ji} MijT=Mji
[ 1 2 3 4 5 6 7 8 9 10 11 12 ] T = [ 1 4 7 10 2 5 8 11 3 6 9 12 ] [ a b c d e f g h i ] T = [ a d g b e h c f i ] \begin{bmatrix}1&2&3\\4&5&6\\7&8&9\\10&11&12\end{bmatrix}^T=\begin{bmatrix}1&4&7&10\\2&5&8&11\\3&6&9&12\end{bmatrix}\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}^T=\begin{bmatrix}a&d&g\\b&e&h\\c&f&i\end{bmatrix} 147102581136912T=123456789101112adgbehcfiT=abcdefghi
对于向量来说,转置将使行向量变成列向量,使列向量变成行向量。
[ x y z ] T = [ x y z ]   [ x y z ] T = [ x y z ] \begin{bmatrix}x&y&z\end{bmatrix}^T=\begin{bmatrix}x\\y\\z\end{bmatrix}\ \begin{bmatrix}x\\y\\z\end{bmatrix}^T=\begin{bmatrix}x&y&z\end{bmatrix} [xyz]T=xyz xyzT=[xyz]
有两条非常简单但很重要的关于矩阵转置的引理:

  • 对于任意矩阵M ( M T ) T = M (M^T)^T=M (MT)T=M
  • 对于任意对角矩阵D D T = D D^T=D DT=D

标量与矩阵的乘法

矩阵M能和标量k相乘,结果是一个和M维数相同的矩阵。
k M = k [ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ] = [ k m 11 k m 12 k m 13 k m 21 k m 22 k m 23 k m 31 k m 32 k m 33 ] kM=k\begin{bmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{bmatrix}=\begin{bmatrix}km_{11}&km_{12}&km_{13}\\km_{21}&km_{22}&km_{23}\\km_{31}&km_{32}&km_{33}\end{bmatrix} kM=km11m21m31m12m22m32m13m23m33=km11km21km31km12km22km32km13km23km33

矩阵乘法

特别:矩阵的乘法和向量的乘法是完全不一样,注意区分。
有两个矩阵AB,要使得AB乘法有意义,那么A的列数必须等于B的行数。
注意:AB ≠ \not = =BA
矩阵乘法计算如下:
c i j = ∑ k = 1 n a i k b k j c_{ij}=\sum_{k=1}^na_{ik}b_{kj} cij=k=1naikbkj
对结果中的任意元素 c i j c_{ij} cij,取A的第 i i i行和B的第 j j j列,将行和列找那个的对应元素相乘,然后将结果相加(等于A i i i行和B j j j列的点积)。

关于矩阵乘法的注意事项:

  • 任意矩阵M乘以方阵S,不管从哪边乘,都将得到与原矩阵大小相同的矩阵。
  • 矩阵乘法不满足交换律。
  • 矩阵乘法满足结合律,即:(AB)C=A(BC)。也可扩展到多个矩阵的情况,如:**ABCD=A(BC)D=A(B(CD)**注意所有括法都能计算出正确结果,但有些组中标量乘法更少。寻找使标量乘法最少的括法的问题称作:矩阵链问题
  • 矩阵乘法也满足与标量或向量的结合律。
  • 矩阵积的转置相当于先转置矩阵然后以相反的顺序乘: ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT,这一结论可以扩展到多个矩阵的情况。

向量与矩阵的乘法

因为向量能被当作是一行或一列的的矩阵,所以能够用矩阵乘法的规则与矩阵相乘。在这里,行向量和列向量的区别非常重要。
[ x y z ] [ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ] = [ x m 11 + y m 21 + z m 31 x m 12 + y m 22 + z m 32 x m 13 + y m 23 + z m 33 ] \begin{bmatrix}x&y&z\end{bmatrix}\begin{bmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{bmatrix}=\begin{bmatrix}xm_{11}+ym_{21}+zm_{31}&xm_{12}+ym_{22}+zm_{32}&xm_{13}+ym_{23}+zm_{33}\end{bmatrix} [xyz]m11m21m31m12m22m32m13m23m33=[xm11+ym21+zm31xm12+ym22+zm32xm13+ym23+zm33]
[ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ] [ x y z ] = [ x m 11 + y m 12 + z m 13 x m 21 + y m 22 + z m 23 x m 31 + y m 32 + z m 33 ] \begin{bmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}xm_{11}+ym_{12}+zm_{13}\\xm_{21}+ym_{22}+zm_{23}\\xm_{31}+ym_{32}+zm_{33}\end{bmatrix} m11m21m31m12m22m32m13m23m33xyz=xm11+ym12+zm13xm21+ym22+zm23xm31+ym32+zm33
[ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ] [ x y z ] = ( 无 定 义 ) \begin{bmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{bmatrix}\begin{bmatrix}x&y&z\end{bmatrix}=(无定义) m11m21m31m12m22m32m13m23m33[xyz]=
[ x y z ] [ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ] = ( 无 定 义 ) \begin{bmatrix}x\\y\\z\end{bmatrix}\begin{bmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{bmatrix}=(无定义) xyzm11m21m31m12m22m32m13m23m33=
关于矩阵和向量相乘的注意事项:

  • 结果向量中的每个元素都是原向量与矩阵中单独行或列元素的点积
  • 矩阵——向量乘法满足对向量加法的分配律。对于向量vw和矩阵M,有:
    ( v + w ) M = v M + w M (v+w)M = vM+wM (v+w)M=vM+wM

矩阵是怎样变换向量的

向量在几何上能被解释为一系列与轴平行的位移。如,向量 [ 1 , − 3 , − 4 ] \begin{bmatrix}1,-3,-4\end{bmatrix} [1,3,4]能被解释成位移 [ 1 , 0 , 0 ] \begin{bmatrix}1,0,0\end{bmatrix} [1,0,0],随后位移 [ 0 , − 3 , 0 ] \begin{bmatrix}0,-3,0\end{bmatrix} [0,3,0],最后位移 [ 0 , 0 , − 4 ] \begin{bmatrix}0,0,-4\end{bmatrix} [0,0,4]
一般来说,任意向量v都能写为“扩展”形式:
v = [ x y z ] = [ x 0 0 ] + [ 0 y 0 ] + [ 0 0 z ] v=\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}x\\0\\0\end{bmatrix}+\begin{bmatrix}0\\y\\0\end{bmatrix}+\begin{bmatrix}0\\0\\z\end{bmatrix} v=xyz=x00+0y0+00z
或者:
v = [ x y z ] = x [ 1 0 0 ] + y [ 0 1 0 ] + z [ 0 0 1 ] v=\begin{bmatrix}x\\y\\z\end{bmatrix}=x\begin{bmatrix}1\\0\\0\end{bmatrix}+y\begin{bmatrix}0\\1\\0\end{bmatrix}+z\begin{bmatrix}0\\0\\1\end{bmatrix} v=xyz=x100+y010+z001
将上面的向量和重新写一遍,分别将p,g,r定义为指向+x、+y和+z方向的单位向量:
v = x p + y q + z r v=xp+yq+zr v=xp+yq+zr
现在,向量v就被表示成向量p,g,r的线性变换了。向量p,g,r称作基向量。
以p,g,r为行,构建一个矩阵M
M = [ p g r ] = [ p x p y p z g x g y g z r x r y r z ] M=\begin{bmatrix}p\\g\\r\end{bmatrix}=\begin{bmatrix}p_x&p_y&p_z\\g_x&g_y&g_z\\r_x&r_y&r_z\end{bmatrix} M=pgr=pxgxrxpygyrypzgzrz
用一个向量乘以该矩阵,得到:
[ x y z ] [ p g r ] = x p + y g + z r = [ x p x + y g x + z r x x p y + y g y + z r y x p z + y g z + z r z ] \begin{bmatrix}x&y&z\end{bmatrix}\begin{bmatrix}p\\g\\r\end{bmatrix}=xp+yg+zr=\begin{bmatrix}xp_x+yg_x+zr_x&xp_y+yg_y+zr_y&xp_z+yg_z+zr_z\end{bmatrix} [xyz]pgr=xp+yg+zr=[xpx+ygx+zrxxpy+ygy+zryxpz+ygz+zrz]
不难发现这里和v的等式相同。
如果把矩阵的行解释为坐标系的基向量,那么乘以该矩阵就相当于进行了一次坐标变换,若有aM=b,我们就可以,M将a转换到b

矩阵的形式

我们曾宣称矩阵表达坐标转换。怎样构建一个矩阵来做这个转换?
先看一下基向量 [ 1 , 0 , 0 ] [ 0 , 1 , 0 ] [ 0 , 0 , 1 ] \begin{bmatrix}1,0,0\end{bmatrix}\begin{bmatrix}0,1,0\end{bmatrix}\begin{bmatrix}0,0,1\end{bmatrix} [1,0,0][0,1,0][0,0,1]乘以任意矩阵M时的情况:
[ 1 , 0 , 0 ] [ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ] = [ m 11 m 12 m 13 ] \begin{bmatrix}1,0,0\end{bmatrix}\begin{bmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{bmatrix}=\begin{bmatrix}m_{11}&m_{12}&m_{13}\end{bmatrix} [1,0,0]m11m21m31m12m22m32m13m23m33=[m11m12m13]
[ 0 , 1 , 0 ] [ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ] = [ m 21 m 22 m 23 ] \begin{bmatrix}0,1,0\end{bmatrix}\begin{bmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{bmatrix}=\begin{bmatrix}m_{21}&m_{22}&m_{23}\end{bmatrix} [0,1,0]m11m21m31m12m22m32m13m23m33=[m21m22m23]
[ 0 , 0 , 1 ] [ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ] = [ m 31 m 32 m 33 ] \begin{bmatrix}0,0,1\end{bmatrix}\begin{bmatrix}m_{11}&m_{12}&m_{13}\\m_{21}&m_{22}&m_{23}\\m_{31}&m_{32}&m_{33}\end{bmatrix}=\begin{bmatrix}m_{31}&m_{32}&m_{33}\end{bmatrix} [0,0,1]m11m21m31m12m22m32m13m23m33=[m31m32m33]
正如您所见,用基向量 [ 1 , 0 , 0 ] \begin{bmatrix}1,0,0\end{bmatrix} [1,0,0]乘以M时,结果M的第一行。其他两行也有同样的结果。这是一个关键的发现:

矩阵的每一行都能解释为转换后的基向量。

这个强有力的概念有两条重要的性质:

  • 有了一个简单的方法来形象化解释矩阵所代表的变换。
  • 有了反向建立矩阵的可能——给出了一个期望的变换(如旋转、缩放等),能够构造一个矩阵代表此变换。我们所要做的一切就是计算基向量的变换,然后将变换后的基向量填入矩阵。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值