乘法逆元

概述

对于一个模方程 ax1(mod m) ,x就是a的乘法逆元,记作 a1
那么求 a/b mod m 的时候,求ab1 mod m$就行了。
ps:和模方程一样,当(a,m)|1(即(a,m)=1)的时候存在解,否则无解。

方法1

用扩展欧几里得算法即可求得x。

int exgcd(int a,int b,int &x,int &y)
{
    if (!b) {x=1;y=0;return a;}
    int r=exgcd(b,a%b,x,y),t=x;x=y;y=t-a/b*y;
    return r;
}
int mul_INV(int a,int m)
{
    int x,y;if (exgcd(a,m,x,y)!=1) return -1;
    return (x%m+m)%m;
}

方法2

一种递推的算法,可以 O(p) 推出1~p-1的逆元(算出INV[i]的前提是INV[i]存在),由于>p的逆元可以回到1~p-1,所以不用求。
首先 111(mod p) ,设 p=ai+r ,则 a=p/i , r=p mod i ,放到mod p的意义下:
ai+r0(mod p)
同乘 i1 r1 ,得:
a(r1+i10(mod p)
i1ar1(mod p)
i1p/i(p mod i)(mod p)
所以说INV[i]=-(p/i)*INV[p%i]

方法3

根据费马小定理,当p为素数,a为正整数, gcd(a,p)=1 时, ap11(mod p) ,所以 ap2a1(mod p) ,则 ap2 mod m <script type="math/tex" id="MathJax-Element-44">m</script>就是a的逆元。

模板

HDU1576,求A/B%MOD。

#include<cstdio>
using namespace std;
const int MOD=9973;

int te,A,B;

int exgcd(int a,int b,int &x,int &y)
{
    if (!b) {x=1;y=0;return a;}
    int r=exgcd(b,a%b,x,y),t=x;x=y;y=t-a/b*y;
    return r;
}
int mul_INV(int a,int m)
{
    int x,y;if (exgcd(a,m,x,y)!=1) return -1;
    return (x%m+m)%m;
}
int main()
{
    freopen("mul_INV.in","r",stdin);
    freopen("mul_INV.out","w",stdout);
    scanf("%d",&te);
    for (int i=1;i<=te;i++)
    {
        scanf("%d%d",&A,&B);
        printf("%d\n",A*mul_INV(B,MOD)%MOD);
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值