sklearn决策树 DecisionTreeClassifier建立模型, 导出模型, 读取

本文演示了如何使用sklearn的DecisionTreeClassifier建立决策树模型,通过调整参数如最大深度和节点数。然后,模型被训练并保存为.dot文件和pickle文件,以便后续使用。此外,还展示了如何加载模型并进行预测,验证了模型的准确性。
摘要由CSDN通过智能技术生成
print(__doc__)

# Import the necessary modules and libraries
import numpy as np
import time
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import math
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import classification_report
from sklearn import tree

#set depth and node method for decision tree
def depthAndNode(dataSet):
    n = np.shape(dataSet)[0]
    depth = 6
    node = 1000
    if n >= 1000000000:
        depth = 20
    elif n >= 1000000 and n < 1000000000:
        depth = math.floor(math.log(n / 1000, 2))
    elif n < 1000000:
        depth_1 = math.log(n / 250, 2)
        depth_2 = math.log(n / 1000, 2)
        depth_min = math.floor(min(depth_1, depth_2))
        node = 250
        if depth_min < 6:
            depth = 6
        
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值