引子
前阵子,阿里Qwen2-VL刚刚闪亮登场,感兴趣的小伙伴可以移步Qwen2-VL环境搭建&推理测试-CSDN博客。这第一的宝座还没坐多久,自家兄弟Ovis1.6版本就来了,20240919阿里国际AI团队开源多模态大模型Ovis1.6。在多模态权威综合评测基准OpenCompass上,Ovis1.6-Gemma2-9B版本综合得分超越Qwen2VL-7B、InternVL2-26B和MiniCPM-V-2.6等主流开源模型,在300亿以下参数开源模型中位居第一。
一、模型介绍
根据OpenCompass评测基准,Ovis1.6-Gemma2-9B超过了Qwen2-VL-7B、MiniCPM-V-2.6等一众相同参数量级的知名多模态模型。在数学等推理任务中,甚至有媲美70B参数模型的表现。Ovis1.6的幻觉现象和错误率也低于同级别模型,展现了更高的文本质量和准确率。阿里国际AI团队的核心思路是:从结构上对齐视觉和文本嵌入。当前,多数开源多模态大语言模型(MLLM)并非从头训练整个模型,而是通过像多层感知机(MLP)这样的连接器,将预训练的大语言模型(LLM)和视觉Transformer集成起来,给LLM装上“眼睛”。这样一来,就导致了一个问题:MLLM的文本和视觉模块采用不同的嵌入策略,使得视觉和文本信息没办法无缝融合,限制了模型性能的进一步提升。针对这个问题,Ovis采用了视觉tokenizer+视觉嵌入表+大语言模型的架构。
二、环境搭建
1、模型下载
https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B/tree/main
2、环境安装
docker run -it --rm --gpus=all -v /datas/work/zzq:/workspace pytorch/pytorch:2.2.2-cuda12.1-cudnn8-devel bash
git clone https://github.com/AIDC-AI/Ovis.git
cd /workspace/Ovis/Ovis-main
pip install -r requirements.txt -i Simple Index
pip install -e .
三、推理测试
1、修改代码
from dataclasses import field, dataclass
from typing import Optional, Union, List
import torch
from PIL import Image
from ovis.model.modeling_ovis import Ovis
from ovis.util.constants import IMAGE_TOKEN
@dataclass
class RunnerArguments:
model_path: str
max_new_tokens: int = field(default=512)
do_sample: bool = field(default=False)
top_p: Optional[float] = field(default=None)
top_k: Optional[int] = field(default=None)
temperature: Optional[float] = field(default=None)
max_partition: int = field(default=9)
class OvisRunner:
def __init__(self, args: RunnerArguments):
self.model_path = args.model_path
# self.dtype = torch.bfloat16
self.device = torch.cuda.current_device()
# self.dtype = torch.bfloat16
self.dtype = torch.float16
self.model = Ovis.from_pretrained(self.model_path, torch_dtype=self.dtype, multimodal_max_length=8192)
self.model = self.model.eval().to(device=self.device)
self.eos_token_id = self.model.generation_config.eos_token_id
self.text_tokenizer = self.model.get_text_tokenizer()
self.pad_token_id = self.text_tokenizer.pad_token_id
self.visual_tokenizer = self.model.get_visual_tokenizer()
self.conversation_formatter = self.model.get_conversation_formatter()
self.image_placeholder = IMAGE_TOKEN
self.max_partition = args.max_partition
self.gen_kwargs = dict(
max_new_tokens=args.max_new_tokens,
do_sample=args.do_sample,
top_p=args.top_p,
top_k=args.top_k,
temperature=args.temperature,
repetition_penalty=None,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
use_cache=True
)
def preprocess(self, inputs: List[Union[Image.Image, str]]):
# for single image and single text inputs, ensure image ahead
if len(inputs) == 2 and isinstance(inputs[0], str) and isinstance(inputs[1], Image.Image):
inputs = reversed(inputs)
# build query
query = ''
images = []
for data in inputs:
if isinstance(data, Image.Image):
query += self.image_placeholder + '\n'
images.append(data)
elif isinstance(data, str):
query += data.replace(self.image_placeholder, '')
elif data is not None:
raise RuntimeError(f'Invalid input type, expected `PIL.Image.Image` or `str`, but got {type(data)}')
# format conversation
prompt, input_ids, pixel_values = self.model.preprocess_inputs(
query, images, max_partition=self.max_partition)
attention_mask = torch.ne(input_ids, self.text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=self.device)
attention_mask = attention_mask.unsqueeze(0).to(device=self.device)
if pixel_values is not None:
pixel_values = [pixel_values.to(device=self.device, dtype=self.dtype)]
else:
pixel_values = [None]
return prompt, input_ids, attention_mask, pixel_values
def run(self, inputs: List[Union[Image.Image, str]]):
prompt, input_ids, attention_mask, pixel_values = self.preprocess(inputs)
output_ids = self.model.generate(
input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
**self.gen_kwargs
)
output = self.text_tokenizer.decode(output_ids[0], skip_special_tokens=True)
input_token_len = input_ids.shape[1]
output_token_len = output_ids.shape[1]
response = dict(
prompt=prompt,
output=output,
prompt_tokens=input_token_len,
total_tokens=input_token_len + output_token_len
)
return response
if __name__ == '__main__':
# runner_args = RunnerArguments(model_path='<model_path>')
runner_args = RunnerArguments(model_path='/workspace/Ovis/Ovis-main/models')
runner = OvisRunner(runner_args)
# image = Image.open('<image_path>')
image = Image.open('/workspace/Ovis/Ovis-main/test.png')
# text = '<prompt>'
text = 'solve the question in this image'
response = runner.run([image, text])
print(response['output'])
python ovis/serve/runner.py
好吧,显存不够