YOLOv11环境搭建&推理测试

引子

        2024年9月30日,Ultralytics在其活动YOLOVision中正式发布了YOLOv 11。YOLOv 11是由位于美国和西班牙的Ultralytics团队开发的YOLO的最新版本。几个月前YOLOv10发布(感兴趣的童鞋可以移步YOLOv10环境搭建&推理测试-CSDN博客),这才过去这么短的时间,YOLOv11就横空出世了。也许追YOLO也成为一个CVer的信仰了吧。OK,那就让我们开始吧。

一、模型介绍

与YOLOv10相比,YOLOv11有了巨大的改进,包括但不限于:

1、增强的模型结构:模型具有改进的模型结构,以获取图像处理并形成预测

2、GPU优化:这是现代ML模型的反映,GPU训练ML模型在速度和准确性上都更好。

3、速度:YOLOv 11模型现在经过增强和GPU优化以用于训练。通过优化,这些模型比它们的前版本快得多。在速度上达到了25%的延迟减少!

4、更少的参数:更少的参数允许更快的模型,但v11的准确性不受影响

5、更具适应性:更多支持的任务YOLOv 11支持多种类型的任务、多种类型的对象和多种类型的图像。

二、环境安装

代码仓库

git clone GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

环境安装

docker run --rm -it --gpus=all -v /datas/work/zzq:/workspace pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel bash

cd /workspace/YOLOv11/ultralytics-main

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install onnx -i https://pypi.tuna.tsinghua.edu.cn/simple

三、测试推理

(1)训练

yolo detect train data=coco.yaml model=yolov10n/s/m/b/l/x.yaml epochs=500 batch=256 imgsz=640 device=0,1,2,3,4,5,6,7

(2)评估

yolo val model=yolov11n/s/m/b/l/x.pt data=coco.yaml batch=256

(3)推理

模型下载

yolo predict model=models/yolo11n.pt source='bus.jpg'

(4)模型转换

转onnx

yolo export model=models/yolov11n.pt format=onnx opset=13 simplify

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要养家的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值