🌞欢迎来到AI+生物医药的世界
🌈博客主页:卿云阁💌欢迎关注🎉点赞👍收藏⭐️留言📝
🌟本文由卿云阁原创!
📆首发时间:🌹2024年4月2日🌹
✉️希望可以和大家一起完成进阶之路!
🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!
化学计量学在基于生物传感器的检测、分析和诊断中发挥着关键作用。如今,作为人工智能(AI)的一个分支,机器学习(ML)已经取得了令人印象深刻的进展。然而,新的高级ML方法,特别是以图像分析、面部识别和语音识别而闻名的深度学习,对生物传感器界来说仍然相对难以捉摸。
本文系统地讨论了ML如何对生物传感器有益。在传感数据分析的基础上,总结了目前流行的ML算法的优缺点。特别强调了卷积神经网络(CNN)和递归神经网络(RNN)等深度学习方法。全面讨论了各种ML辅助电化学生物传感器、可穿戴电子器件、SERS等基于光谱的生物传感器、荧光生物传感器和比色生物传感器。
此外,还介绍了生物传感器网络和多生物传感器数据融合。这篇综述将很好地将ML与生物传感器连接起来,并大大扩展用于检测、分析和诊断的化学计学。
生物传感器是一种检测或诊断设备。与传统或更大的分析仪器相比,生物传感器具有速度快、成本低、无损和现场检测的优点。它们已被广泛用于基础生物研究、食品安全、环境监测、疾病诊断、药物筛选。在过去的几十年里,随着纳米技术、信号放大策略和换能器的广泛发展,生物传感器得到了长足的进步。然而,所有的生物传感器都不可避免地存在一些不规则的信号噪声。一些生物传感器严重依赖抗体或适体作为生物受体,这限制了生物传感器的保质期短和稳定性差。
目前大多数生物传感器的准确性和可靠性限制了它们的商业化。因此,研究人员正在寻找其他方面的突破,以提高生物传感器的性能。在此,基于机器学习(ML)的传感数据分析是重点。ML可以为克服生物传感器面临的挑战提供新的策略,也可以成为普通生物传感器成为智能生物传感器的途径,智能生物传感器可以基于决策系统自动预测分析物的种类或浓度。化学计量学属于化学学科,它采用统计或数学方法,(a)通过分析化学数据来询问最大的化学信息,(b)选择或设计最佳的实验和测量程序。化学计量方法在分析化学中得到了广泛接受。可以是克服生物传感器挑战的策略或工具之一。化学计量学在电化学、光学、比色、和其他生物传感器产生的复杂信号的定量和定性处理中的应用被广泛报道。已经报道了许多机器学习算法,最著名的是主成分分析或回归(PCA或PCR)、线性判别分析(LDA)、多元线性回归(MLR)、偏最小二乘判别分析或回归法(PLSDA或PLSR)、层次聚类分析(HCA)及其组合。这些化学计量方法在以前的工作中已经得到了全面的回顾。如今,许多先进的数据处理ML算法正在出现,如κ-最近邻(κNN)、支持向量机(SVM)、朴素贝叶斯(NB)、决策树(DT)、梯度提升树(GBT)、随机森林(RF)、前馈人工神经网络(前馈ANN)、递归神经网络(RNN)和卷积神经网络(CNN)。他们中的一些人很好地参与了生物传感器,而另一些人则没有受到生物传感器界的影响。与传统ML方法相比,先进ML方法的优点这些方法能够询问复杂生物样品的适当非线性依赖性,为解决生物传感器领域的紧迫挑战提供了无与伦比的的可能性。AI、ML和DL以及各种ML算法之间的关系如图1所示。第3节将更详细地介绍ML算法。
这篇综述的目的是及时介绍先进ML及其在生物传感器中的应用的讨论和展望。将系统地介绍各种ML算法,并强调它们在各种生物传感器中的应用。在ML的帮助下,化学计量学将得到扩展,生物传感器可以成为智能生物传感器。更进一步,智能生物传感器将很容易集成到物联网(IoT)中。
图1。AI、ML和DL之间的关系,以及本综述中涉及的各种ML算法。CNN:卷积神经网络。DT:决策树。前馈神经网络:前馈人工神经网络。GBT:梯度提升树。HCA:层次聚类分析。κNN:κ-最近邻。LDA:线性判别分析。MLR:多元线性回归。NB:天真的贝叶斯。PCA或PCR:主成分分析或回归。PLSDA或PLSR:偏最小二乘判别分析或回归。RF:随机森林。RNN:递归神经网络。SVM:支持向量机。
图2:ML给生物传感器带来的好处。
ML如何使生物传感器受益
首先,ML可以有效地处理复杂矩阵或样本的大感知数据。
ML在生物传感器中的另一个好处包括从可能彼此严重重叠的噪声和低分辨率传感数据中获得合理分析结果的可能性。此外,适当部署ML方法可以通过数据可视化发现样本参数和传感信号之间隐藏的关系,并挖掘信号和生物事件之间的相互关系。特别地,ML可以用于以几种方式分析来自生物传感器的原始感测数据:
(1) 分类:基于目标分析物的算法可以将传感信号分类为各种类别。
(2)异常检测:生物传感器不可避免地受到样品基质和操作条件的影响。当生物传感器在现场使用时,它们会显著干扰污染。ML可以检查信号并回答“信号看起来正确吗?”它也可以“纠正”由于真实样本中的生物污垢和干扰而导致的传感器性能变化。
(3) 降噪:感应信号中始终包含噪声。来自生物传感器的信号会在几秒钟或几分钟内发生变化,而诸如电噪声之类的信号干扰可能会在亚秒时间线上发生。因此,可以训练ML模型来区分信号和噪声。
(4) 物体识别和模式识别。通过使用ML算法发现潜在物体和模式,可以轻松有效地解释传感数据。
ML可以直接、自动、准确、快速地辅助生物传感器读数,这对于现场检测或诊断非常重要。Orringer小组开发了一种CNN算法辅助的光学成像方法来预测诊断结果。结果可以在150秒内以自动方式读出。然而,病理工作人员对图像的解释需要30分钟。
此外,机器学习已被用于设计更理想的生物传感器。具有负渗透率和介电常数的超材料已被应用于放大基于表面等离子共振(SPR)的生物传感器的检测信号。准备具有各种反射特性的超材料对确保共振对 SPR 生物传感器有用是至关重要的。自编码器(AE)和多层感知器(MLP)被用来预测超材料 SPR 生物传感器的反射特性。随后,利用 t-分布随机邻域嵌入(t-SNE)和 AE 进行降维处理,对超材料进行了 k-均值聚类。对超材料进行聚类可以极大地加速研究人员设计优化的感应器装置,而不需要进行大量的实验。
图 3. (A) 基于机器学习的数据分析的一般流程。(B) 训练阶段中的损失曲线。当测试集的损失增加时,会发生过拟合现象。获得授权转载自参考文献47。版权归2019年 Elsevier B.V.所有。(C) 混淆矩阵的表示,可从中提取的第一级指标以及更高效的第二级指标公式。获得授权转载自参考文献44。版权归2020年 Elsevier B.V.所有。(D) ROC 曲线。获得授权转载自参考文献50。版权归2019年 Springer Nature Limited所有。
各种机器学习算法及其在生物传感器中的优点
本节旨在介绍先进机器学习算法的一般类型和实施过程。抽象地说,机器学习被定义为一种能够通过从原始数据中提取特征来获取知识的系统或计算机程序。这些新获得的知识可以用来做出决策,以解决现实世界中的问题。具体来说,在生物传感器领域应用机器学习时,它被视为一种数据处理和分析的工具或方法,例如提取特征或预测分析物的种类和浓度。机器学习可以分为监督学习和无监督学习。监督学习是指可以通过一组带有目标输出的输入数据来训练的机器学习算法。在训练阶段,算法对输入数据集进行一定的预测,并使用给定的真实值来提高预测值,直到算法达到可接受的准确度。它们通常用于执行分类和回归,并取得了很大的进展,特别是对于光谱生物传感器。无监督学习则是指没有带有给定输出的标记训练数据集。其目标是确定输入空间中数据集的分布(称为密度估计)或在输入数据集中找到一组相似的例子(称为聚类)。k均值聚类是最常见的无监督学习算法之一。
机器学习数据分
用机器学习推进生物传感器
于 2024-04-03 10:00:32 首次发布