子子翔的专栏

挨踢民工生涯

《算法导论(第2版)》习题6.3-3题解

Solution to CLRS 2e Exercise 6.3-3

Show that there are at most ceil(n / 2^(h + 1)) nodes of height h in any n-element heap.

A heap node of index i (starting from 1) is of height h if and only if (2^h) * i <= n < (2^(h + 1)) * i, or n / 2^{h + 1} < i <= n / 2^{h}, or floor(n / 2^{h + 1}) < i <= floor(n / 2^h) since i is an integer. Therefore, the number of nodes of height h in any n-element heap is at most floor(n / 2^h) - floor(n / 2^{h + 1}) <= ceil(n / 2^{h + 1}).

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zzxiang1985/article/details/6155457
文章标签: 算法
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

《算法导论(第2版)》习题6.3-3题解

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭