【Linear Algebra】向量

3. 向量

本文重点在知识归纳,不帮助理解

3.1 n 维向量的概念与计算

3.1.1 概念

n n n 维向量 n n n 个数 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,,an 所构成的一个有序数组称为 n 维向量,记成 ( a 1 , a 2 , … , a n ) (a_1,a_2,\dots,a_n) (a1,a2,,an) ( a 1 , a 2 , … , a n ) T (a_1,a_2,\dots,a_n)^T (a1,a2,,an)T,称 n n n 维行向量或 n n n 维列向量,其中 a i a_i ai 称为向量的第 i i i 个分量

零向量:所有分量为 0 的向量称为零向量,记为 0 0 0

3.1.2 计算
  • 加法: α + β = ( a 1 + b 1 , a 2 + b 2 , … , a n + b n ) \bm{\alpha + \beta} = (a_1 + b_1,a_2 + b_2,\dots,a_n + b_n) α+β=(a1+b1,a2+b2,,an+bn)
  • 数乘: k α = ( k a 1 , k a 2 , … , k a n ) k\bm{\alpha} = (ka_1, ka_2,\dots,ka_n) kα=(ka1,ka2,,kan)
  • 内积: ( α , β ) = a 1 b 1 + a 2 b 2 + ⋯ + a n b n = α T β = β T α (\bm{\alpha,\beta}) = a_1b_1 + a_2b_2 + \dots + a_nb_n = {\bm\alpha^T\bm\beta} = {\bm\beta^T\bm\alpha} (α,β)=a1b1+a2b2++anbn=αTβ=βTα

( α , β ) = 0 (\bm{\alpha,\beta}) = 0 (α,β)=0,称向量 α \bm\alpha α β \bm\beta β 正交

3.2 线性表出、线性相关

3.2.1 线性表出概念

m m m n n n 维向量 α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm m m m 个数 k 1 , k 2 , … , k m k_1,k_2,\dots,k_m k1,k2,,km 所构成的向量

k 1 α 1 + k 2 α 2 + ⋯ + k m α m = β k_1\bm\alpha_1 + k_2\bm\alpha_2 + \dots +k_m\bm\alpha_m = \bm\beta k1α1+k2α2++kmαm=β

β \bm\beta β 称为向量组 α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm 的一个线性组合(或者说 β \bm\beta β 可由 α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm线性表出(示)),数 k 1 , k 2 , … , k m k_1,k_2,\dots,k_m k1,k2,,km 称为组合系数

设有向量组(1) α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 与向量组(2) β 1 , β 2 , … , β t \bm{\beta_1, \beta_2,\dots,\beta_t} β1,β2,,βt,若(1)中的每一个向量都可由(2)线性表出,则称向量组(1)可由向量组(2)线性表出

  • 如果两个向量组可以互相线性表出,则称这两个向量组等价
  • 等价向量组具有传递、对称、反身性
  • 向量组和它的极大线性无关组是等价向量组
  • 向量组的任意两个极大线性无关组是等价向量组
  • 等价的向量组具有相同的秩,但秩相等的向量组不一定等价
3.2.2 线性相关、线性无关概念

对于 n n n 维向量 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs,如果存在不全为零的数 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks 使得

k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 k_1\bm\alpha_1 + k_2\bm\alpha_2 + \dots +k_s\bm\alpha_s = \bm0 k1α1+k2α2++ksαs=0

则称向量组 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 线性相关,否则称线性无关

3.2.3 重要定理

定理 1 n n n 维向量 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 线性相关 ⇔ \Leftrightarrow 齐次方程组 ( α 1 , α 2 , … , α s ) [ x 1 x 2 …   x s ] = 0 (\bm{\alpha_1, \alpha_2,\dots,\alpha_s})\begin{bmatrix}x_1 \\ x_2 \\ \dots\ \\ x_s \end{bmatrix} = \bm0 (α1,α2,,αs)x1x2 xs=0 有非零解 ⇔ \Leftrightarrow r ( α 1 , α 2 , … , α s ) &lt; s r(\bm{\alpha_1, \alpha_2,\dots,\alpha_s}) &lt; s r(α1,α2,,αs)<s

  • 推论 1 n n n n n n 维向量 α 1 , α 2 , … , α n \bm{\alpha_1, \alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow 行列式 ∣ α 1 , α 2 , … , α n ∣ |\bm{\alpha_1, \alpha_2,\dots,\alpha_n}| α1,α2,,αn = 0
  • 推论 2 n + 1 n + 1 n+1 n n n 维向量必线性相关
  • 推论 3:如果 α 1 , α 2 , … , α r \bm{\alpha_1, \alpha_2,\dots,\alpha_r} α1,α2,,αr 线性相关,则 α 1 , α 2 , … , α r , α r + 1 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_r, \alpha_{r+1},\dots,\alpha_s} α1,α2,,αr,αr+1,,αs 必线性相关
  • 推论 4:如果 n n n 维向量组 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 线性无关,则他的延伸组 ( α 1 β 1 ) , ( α 2 β 2 ) , … , ( α s β s ) \begin{pmatrix} \bm\alpha_{1} \\ \bm\beta_{1} \end{pmatrix},\begin{pmatrix} \bm\alpha_{2} \\ \bm\beta_{2} \end{pmatrix},\dots,\begin{pmatrix} \bm\alpha_{s} \\ \bm\beta_{s} \end{pmatrix} (α1β1),(α2β2),,(αsβs)必线性无关

(齐次方程组就是常数项全为零的方程组)

定理 2 n n n 维向量 β \bm\beta β 可由 α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm 线性表出 ⇔ \Leftrightarrow 非齐次方程组 ( α 1 , α 2 , … , α m ) [ x 1 x 2 …   x m ] = β (\bm{\alpha_1, \alpha_2,\dots,\alpha_m})\begin{bmatrix}x_1 \\ x_2 \\ \dots\ \\ x_m \end{bmatrix} = \bm\beta (α1,α2,,αm)x1x2 xm=β 有解 ⇔ \Leftrightarrow r ( α 1 , α 2 , … , α m ) = r ( α 1 , α 2 , … , α s , β ) r(\bm{\alpha_1, \alpha_2,\dots,\alpha_m}) = r(\bm{\alpha_1, \alpha_2,\dots,\alpha_s, \bm\beta}) r(α1,α2,,αm)=r(α1,α2,,αs,β)

定理 3:向量组 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 线性相关 ⇔ \Leftrightarrow 至少有一个向量 α i \bm\alpha_i αi 可以由其余 s − 1 s - 1 s1 个向量线性表出

定理 4:向量组 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 线性无关,而向量组 α 1 , α 2 , … , α s , β \bm{\alpha_1, \alpha_2,\dots,\alpha_s,\beta} α1,α2,,αs,β 线性相关,则向量 β \bm\beta β 可以由 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 线性表出,且表示法唯一

定理 5:设有两个 n n n 维向量组(1) α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 与向量组(2) β 1 , β 2 , … , β t \bm{\beta_1, \beta_2,\dots,\beta_t} β1,β2,,βt,如果(1)能由(2)线性表出,且 s &gt; t s &gt; t s>t,则 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 必线性相关

  • 推论 1:若 n n n 维向量组 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 可由 β 1 , β 2 , … , β t \bm{\beta_1, \beta_2,\dots,\beta_t} β1,β2,,βt 线性表出,且 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 线性无关,则 s ≤ t s \leq t st

3.3 极大线性无关组、秩

3.3.1 极大线性无关组、向量组秩的概念

极大线性无关组

设向量组 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 中,有一个部分组 α i 1 , α i 2 , … , α i r ( 1 ≤ r ≤ s ) \bm{\alpha_{i_1}, \alpha_{i_2},\dots,\alpha_{i_r}}(1 \leq r \leq s) αi1,αi2,,αir(1rs),满足以下条件

  1. α i 1 , α i 2 , … , α i r \bm{\alpha_{i_1}, \alpha_{i_2},\dots,\alpha_{i_r}} αi1,αi2,,αir 线性无关;
  2. 再添加任一向量 α j ( 1 ≤ j ≤ s ) \alpha_j(1 \leq j \leq s) αj(1js),向量组 α i 1 , α i 2 , … , α i r , α j \bm{\alpha_{i_1}, \alpha_{i_2},\dots,\alpha_{i_r}, \alpha_j} αi1,αi2,,αir,αj 必线性相关

则称向量组 α i 1 , α i 2 , … , α i r \bm{\alpha_{i_1}, \alpha_{i_2},\dots,\alpha_{i_r}} αi1,αi2,,αir 是向量组 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 的一个极大线性无关组

  • 只有一个零向量构成的向量组没有极大线性无关组
  • 一个线性无关的向量组的极大线性无关组是该向量组本身
  • 向量组的极大线性无关组一般不唯一,但其极大线性无关组的向量个数是一样的
  • 条件 2 的等价说法是:向量组 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 中任一个向量 α j ( 1 ≤ j ≤ s ) \alpha_j(1 \leq j \leq s) αj(1js) 必可由 α i 1 , α i 2 , … , α i r \bm{\alpha_{i_1}, \alpha_{i_2},\dots,\alpha_{i_r}} αi1,αi2,,αir 线性表出

向量组的秩

向量 α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 的极大线性无关组中所含向量个数 r r r 称为向量组的秩,记为 r ( α 1 , α 2 , … , α s ) = r r(\bm{\alpha_1, \alpha_2,\dots,\alpha_s}) = r r(α1,α2,,αs)=r

  • r ( α 1 , α 2 , … , α s ) ≤ r ( α 1 , α 2 , … , α s , α s + 1 ) r(\bm{\alpha_1, \alpha_2,\dots,\alpha_s}) \leq r(\bm{\alpha_1, \alpha_2,\dots,\alpha_s, \alpha_{s+1}}) r(α1,α2,,αs)r(α1,α2,,αs,αs+1)
3.3.2 有关秩的定理

定理 1:如果维向量组(1) α 1 , α 2 , … , α s \bm{\alpha_1, \alpha_2,\dots,\alpha_s} α1,α2,,αs 可由向量组(2) β 1 , β 2 , … , β t \bm{\beta_1, \beta_2,\dots,\beta_t} β1,β2,,βt 线性表出,则 r ( 1 ) &lt; r ( 2 ) r(1) &lt; r(2) r(1)<r(2)

  • 推论 1:如果向量组(1)和(2)等价,则 r ( 1 ) = r ( 2 ) r(1) = r(2) r(1)=r(2)

定理 2 r ( A ) = A r(A) = A r(A)=A 的行秩(矩阵 A A A 的行向量组的秩) = A =A =A 的列秩(矩阵 A A A 列向量组的秩)

定理 3:经初等变换向量组的秩不变

3.4 Schmidt 正交化、正交矩阵

3.4.1 Schmidt 正交化(正交化规范方法)

设向量组 α 1 , α 2 , α 3 \bm{\alpha_1, \alpha_2, \alpha_3} α1,α2,α3 线性无关,其正交规范化方法步骤如下:

β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \begin{aligned} \bm\beta_1 &amp; = \bm\alpha_1 \\ \bm\beta_2 &amp; = \bm\alpha_2 - \frac{(\bm\alpha_2,\bm\beta_1)}{(\bm\beta_1,\bm\beta_1)}\bm\beta_1 \\ \bm\beta_3 &amp; = \bm\alpha_3 - \frac{(\bm\alpha_3,\bm\beta_1)}{(\bm\beta_1,\bm\beta_1)}\bm\beta_1 - \frac{(\bm\alpha_3,\bm\beta_2)}{(\bm\beta_2,\bm\beta_2)}\bm\beta_2\\ \end{aligned} β1β2β3=α1=α2(β1,β1)(α2,β1)β1=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2

β 1 , β 2 , β 3 \bm\beta_1,\bm\beta_2,\bm\beta_3 β1,β2,β3 两两正交,再将它们单位化,取

γ 1 = β 1 ∣ β 1 ∣ ,     γ 2 = β 2 ∣ β 2 ∣ ,     γ 3 = β 3 ∣ β 3 ∣ \begin{aligned} \bm\gamma_1 = \frac{\bm\beta_1}{|\bm\beta_1|} ,~~~ \bm\gamma_2 = \frac{\bm\beta_2}{|\bm\beta_2|} ,~~~ \bm\gamma_3 = \frac{\bm\beta_3}{|\bm\beta_3|} \\ \end{aligned} γ1=β1β1,   γ2=β2β2,   γ3=β3β3

γ 1 , γ 2 , γ 3 \bm\gamma_1,\bm\gamma_2,\bm\gamma_3 γ1,γ2,γ3正交规范化向量组(即两两正交且均是单位向量)

3.4.2 正交矩阵

A A A n n n 阶矩阵,满足 A A T = A T A = E AA^T = A^TA = E AAT=ATA=E,则 A A A 是正交矩阵

  • A A A 是正交矩阵 ⇔ A T = A − 1 ⇔ A \Leftrightarrow A^T = A^{-1} \Leftrightarrow A AT=A1A 的列(行)向量组是正交规范向量组
  • A A A 是正交矩阵,则行列式 ∣ A ∣ = 1 |A| = 1 A=1 − 1 -1 1

3.5 向量空间

3.5.1 向量空间的概念

向量空间:全体 n n n 维向量连同向量的加法和数乘运算合称为 n n n向量空间

子空间

W W W n n n 维向量的非空集合,如果满足

  1. ∀ α , β ∈ W \forall \bm\alpha,\bm\beta \in W α,βW 必有 α + β ∈ W \bm\alpha + \bm\beta \in W α+βW
  2. ∀ α ∈ W \forall \bm\alpha \in W αW 及任意实数 k k k 必有 k α ∈ W k\bm\alpha \in W kαW

W W W n n n 维向量空间的子空间

基底、维度、坐标

如果向量空间 V V V 中的 m m m 个向量 α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm 满足

  1. α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm 线性无关
  2. 对于 V V V 中任意向量 β \bm\beta β β \bm\beta β 均可由向量组 α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm 线性表出,即

x 1 α 1 + x 2 α 2 + ⋯ + x m α m = β x_1\bm\alpha_1 + x_2\bm\alpha_2 + \dots + x_m\bm\alpha_m = \bm\beta x1α1+x2α2++xmαm=β

则称 α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm 是空间 V V V 的一个基底(或)。

  • 基中所含向量个数 m m m 称为向量空间 V V V维度,记作 d i m V = m dimV = m dimV=m,并称 V V V m m m 维的向量空间
  • 向量 β \bm\beta β 的表示系数 x 1 , x 2 , … , x m x_1,x_2,\dots,x_m x1,x2,,xm 称为向量 β \bm\beta β 在基底 α 1 , α 2 , … , α m \bm{\alpha_1, \alpha_2,\dots,\alpha_m} α1,α2,,αm 下的坐标

规范正交基

e 1 , e 2 , … , e n \bm{e_1, e_2,\dots,e_n} e1,e2,,en 是向量空间的一组基,如果它满足

( e i , e j ) = { 1 ,     i = j 0 ,     i = ̸ j (\bm{e_i,e_j}) = \left\{ \begin{aligned} 1 &amp; ,~~~i = j \\ 0 &amp; ,~~~i =\not j \\ \end{aligned} \right. (ei,ej)={10,   i=j,   i≠j

则称 e 1 , e 2 , … , e n \bm{e_1, e_2,\dots,e_n} e1,e2,,en规范正交基

解空间

齐次方程组 A x = 0 A\bm{x} = \bm{0} Ax=0 的解向量的集合 W W W,由解的性质知:若 α , β \bm\alpha,\bm\beta α,β A x = 0 A\bm{x} = \bm{0} Ax=0 的解,则 α + β , k α \bm{\alpha} + \bm{\beta}, k\bm\alpha α+β,kα 仍是 A x = 0 A\bm{x} = \bm{0} Ax=0 的解,所以 W W W n n n 维向量空间的子空间,通常称为解空间

过渡矩阵

n n n 维向量空间给定两组基

  1. α 1 , α 2 , … , α n \bm{\alpha_1, \alpha_2,\dots,\alpha_n} α1,α2,,αn
  2. β 1 , β 2 , … , β n \bm{\beta_1, \beta_2,\dots,\beta_n} β1,β2,,βn

β 1 = c 11 α 1 + c 21 α 2 + ⋯ + c n 1 α n β 2 = c 12 α 1 + c 22 α 2 + ⋯ + c n 2 α n … = … β n = c 1 n α 1 + c 2 n α 2 + ⋯ + c n n α n \begin{aligned} \bm\beta_1 &amp; = c_{11}\bm\alpha_1 + c_{21}\bm\alpha_2 + \dots + c_{n1}\bm\alpha_n \\ \bm\beta_2 &amp; = c_{12}\bm\alpha_1 + c_{22}\bm\alpha_2 + \dots + c_{n2}\bm\alpha_n \\ \dots &amp; = \dots \\ \bm\beta_n &amp; = c_{1n}\bm\alpha_1 + c_{2n}\bm\alpha_2 + \dots + c_{nn}\bm\alpha_n \\ \end{aligned} β1β2βn=c11α1+c21α2++cn1αn=c12α1+c22α2++cn2αn==c1nα1+c2nα2++cnnαn

[ β 1 , β 2 , … , β n ] = [ α 1 , α 2 , … , α n ] C [\bm{\beta_1, \beta_2,\dots,\beta_n}] = [\bm{\alpha_1, \alpha_2,\dots,\alpha_n}]C [β1,β2,,βn]=[α1,α2,,αn]C,其中

C = [ c 11 c 12 . . . c 1 n c 21 c 22 . . . c 2 n . . . . . . . . . c n 1 c n 2 . . . c n n ] C = \begin{bmatrix} c_{11} &amp; c_{12} &amp; ... &amp; c_{1n} \\ c_{21} &amp; c_{22} &amp; ... &amp; c_{2n} \\ ... &amp; ... &amp; &amp; ... \\ c_{n1} &amp; c_{n2} &amp; ... &amp; c_{nn} \\ \end{bmatrix} C=c11c21...cn1c12c22...cn2.........c1nc2n...cnn

称为由基 β 1 , β 2 , … , β n \bm{\beta_1, \beta_2,\dots,\beta_n} β1,β2,,βn 到基 β 1 , β 2 , … , β n \bm{\beta_1, \beta_2,\dots,\beta_n} β1,β2,,βn过渡矩阵

3.5.2 主要定理

定理 1:如果 α 1 , α 2 , … , α n \bm{\alpha_1, \alpha_2,\dots,\alpha_n} α1,α2,,αn β 1 , β 2 , … , β n \bm{\beta_1, \beta_2,\dots,\beta_n} β1,β2,,βn n n n 维向量空间的两个基底,则由基 α 1 , α 2 , … , α n \bm{\alpha_1, \alpha_2,\dots,\alpha_n} α1,α2,,αn 到基 β 1 , β 2 , … , β n \bm{\beta_1, \beta_2,\dots,\beta_n} β1,β2,,βn 的过渡矩阵 C C C 是可逆矩阵

定理 2:如果向量 γ \bm\gamma γ 在基底 α 1 , α 2 , … , α n \bm{\alpha_1, \alpha_2,\dots,\alpha_n} α1,α2,,αn 的坐标为 x 1 , x 2 , … , x n {x_1, x_2,\dots,x_n} x1,x2,,xn,向量 γ \bm\gamma γ 在基底 β 1 , β 2 , … , β n \bm{\beta_1, \beta_2,\dots,\beta_n} β1,β2,,βn 的坐标为 y 1 , y 2 , … , y n {y_1, y_2,\dots,y_n} y1,y2,,yn,则坐标变换公式为

[ x 1 x 2 … x n ] = C [ y 1 y 2 … y n ]     o r    x = C y \begin{bmatrix} x_1 \\ x_2 \\ \dots\\ x_n \\ \end{bmatrix} = C \begin{bmatrix} y_1 \\ y_2 \\ \dots\\ y_n \\ \end{bmatrix} ~~~or~~\bm{x} = C\bm{y} x1x2xn=Cy1y2yn   or  x=Cy

其中 n n n 阶矩阵 C C C 是由基底 α 1 , α 2 , … , α n \bm{\alpha_1, \alpha_2,\dots,\alpha_n} α1,α2,,αn 到基底 β 1 , β 2 , … , β n \bm{\beta_1, \beta_2,\dots,\beta_n} β1,β2,,βn 的过渡矩阵

定理 3:若 e 1 , e 2 , … , e n \bm{e_1, e_2,\dots, e_n} e1,e2,,en 是规范正交基,设 [ ε 1 , ε 2 , … , ε n ] = [ e 1 , e 2 , … , e n ] C [\bm{\varepsilon_1, \varepsilon_2,\dots, \varepsilon_n}] = [\bm{e_1, e_2,\dots, e_n}]C [ε1,ε2,,εn]=[e1,e2,,en]C,则 ε 1 , ε 2 , … , ε n \bm{\varepsilon_1, \varepsilon_2,\dots, \varepsilon_n} ε1,ε2,,εn 是规范正交基的充分必要条件是 C C C 为正交矩阵

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值