shortcut和残差连接

最近搜索了下这几两个概念,记录一下个人理解。

  • shortcut
    在这里插入图片描述
    x、y是相邻两层,通过W_H连接,通过将多个这样的层前后串接起来就形成了深度网络。其中H表示网络中的变换。
    在这里插入图片描述
    为了解决深度网络的梯度发散问题,Highway在两层之间增加了(带权的)shortcut。
    在这里插入图片描述
    在这里插入图片描述
    其中C=1-T。

  • 残差连接(skip connect)在这里插入图片描述

若没有加入identity分支,那么就是用非线性变化函数来描述一个网络的输入输出,即输入为X,输出为F(x),F通常包括了卷积,激活等操作。

但是当我们强行将一个输入添加到函数的输出的时候,虽然我们仍然可以用G(x)来描述输入输出的关系,但是这个G(x)却可以明确的拆分为F(x)和X的线性叠加。将输出表述为输入和输入的一个非线性变换的线性叠加。它解决了深层网络无法训练的问题。

首先我们定义残差单元:
在这里插入图片描述

Xl和Xl+1表示的是第l个残差单元的输入和输出,F是残差结构,表示学习到的残差,当h(xl)=xl时表示的就是恒等映射,f是relu激活函数。
通过递归,可以得到任意深层单元L特征的表达:
在这里插入图片描述

反向传播过程为:

在这里插入图片描述
表示损失函数到达L的梯度,小括号里的1表示短路机制(identity x)可以无损地传播梯度,而另一项残差梯度则需要经过带有weights的层,残差梯度不会那么巧全为-1,就算其很小,由于1的存在不会导致梯度消失,所以残差学习会更容易。在这里插入图片描述

再举个例子看看残差网络是如何改善梯度消失现象的:
假设输入只有一个特征,没有偏置单元,每层只有一个神经元:
在这里插入图片描述
我们先进行前向传播,这里将Sigmoid激励函数写为s(x):

z1 = w1*x

a1 = s(z1)

z2 = w2*a1

a2 = s(z2)

zn = wn*an-1 (这里n-1是下标)

an = s(zn)

根据链式求导和反向传播,我们很容易得出,其中C是代价函数
在这里插入图片描述
那如果在a1和a2之间加入残差连接,如下所示:
在这里插入图片描述
那么z2=a1*w2+a1
所以z2对a1求导的结果就是(w2+1)
上边的链式求导、反向传输的结果中的w2就变成了(w2+1)
所以残差连接可以有效缓解梯度消失的现象。

最后一个例子:
在这里插入图片描述

ResNet网络就是用到了这种残差连接。

残差连接shortcut连接在深度学习领域中是一个概念的不同表述方式。它们主要用于处理深度神经网络中的信息传递,尤其是在解决深层网络训练过程中常见的梯度消失、梯度爆炸等问题时发挥重要作用。 ### 关系详解: #### 1. **基本原理** - **Residual Connection (残差连接)** **Shortcut Connection (跳越连接)** 都旨在通过直接将输入信号添加到经过一定变换后的输出上,从而减小深层网络训练难度,并保持每一层的信息流。 #### 2. **结构差异与共同目标** - **残差块**(通常包含了一个或多个卷积层以及一个跳越连接),其核心思想是在原有特征图上直接加回原始输入,即 \(y = F(x) + x\)。这里的 \(F(x)\) 表示了网络的主体部分,包含了复杂的变换过程。这一设计使得模型能够更轻松地学习更深层次的表征,因为它允许网络直接对原始输入进行微调而非从零开始学习每层的新表示。 - **跳越连接** 这一术语更多地出现在早期文献讨论中,实际上描述的就是与残差连接相同的机制。它的目的同样是简化深层网络的训练,通过保留更多的原始输入信息,帮助网络更好地学习并避免过拟合。 #### 3. **应用场景** - 残差连接跳越连接被广泛应用于卷积神经网络(CNN)、循环神经网络(RNN)等深度学习架构中。在诸如ResNet系列、ResNeXt、DenseNet等经典架构的设计中,这类连接发挥了关键作用。 ### 实际意义 引入残差连接或跳越连接可以显著提升深度网络的学习能力,特别是在构建非常深的神经网络时。这不仅是因为它可以缓解反向传播过程中梯度的衰减问题,而且还能帮助网络学习更复杂、更高层次的特征表示。同时,这种结构也促进了更好的泛化性能,因为在一定程度上它们减少了过度拟合的风险。 ### 相关问题: 1. **为什么残差连接能有效提高深度网络的训练效果?** 2. **在哪些类型的深度学习模型中最常使用残差连接?** 3. **如何在实践中设计合理的残差块来优化深度网络的表现?**
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值