『HDU 1402』A * B Problem Plus

本文介绍了一种使用快速傅立叶变换(FFT)来加速大数乘法的方法。通过对比传统方法,展示了FFT在处理大规模数值乘法时的优势,并提供了详细的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1402
代码转载:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210389.html
题解转载:http://blog.csdn.net/jtjy568805874/article/details/49493667

题意:就是个大叔乘法,但是值有n<=50000,传统的n2是过不了的… 要用fft进行加速.

个人感想:
我看了2晚的fft,重复一遍一遍看,可是,一旦看到公式那些根本看不下去,我只理解大概意思,但好多东西还是很模糊… - -这对我这种蒟蒻来说,感觉能力有限啊…我已经尽力了…暂时只要知道能怎么用就好了…
个人还是比较喜欢用bin神的代码…怎么说,喜欢他的风格,写的代码干干净净又看起来舒服,好好理解…
这是我的fft开始啊~很久想学习就是没时间了.

分析:快速傅里叶转换.

代码:

/* Author:GavinjouElephant
 * Title:
 * Number:
 * main meanning:
 *
 *
 *
 */


#include <iostream>
using namespace std;
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <sstream>
#include <cctype>
#include <vector>
#include <set>
#include <cstdlib>
#include <map>
#include <queue>
//#include<initializer_list>
//#include <windows.h>
//#include <fstream>
//#include <conio.h>
#define MaxN 0x7fffffff
#define MinN -0x7fffffff
#define lson 2*k
#define rson 2*k+1
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=2e5+10;
const double PI = acos(-1.0);

int Scan()//读入整数外挂.
{
    int res = 0, ch, flag = 0;

    if((ch = getchar()) == '-')             //判断正负
        flag = 1;

    else if(ch >= '0' && ch <= '9')           //得到完整的数
        res = ch - '0';
    while((ch = getchar()) >= '0' && ch <= '9' )
        res = res * 10 + ch - '0';
    return flag ? -res : res;
}
 void Out(int a)    //输出外挂
 {
     if(a>9)
         Out(a/10);
     putchar(a%10+'0');
 }

//复数结构体
struct Complex
{
    double r,i;
    Complex(double _r = 0.0,double _i = 0.0)
    {
        r = _r; i = _i;
    }
    Complex operator +(const Complex &b)
    {
        return Complex(r+b.r,i+b.i);
    }
    Complex operator -(const Complex &b)
    {
        return Complex(r-b.r,i-b.i);
    }
    Complex operator *(const Complex &b)
    {
        return Complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
};
/*
 * 进行FFT和IFFT前的反转变换。
 * 位置i和 (i二进制反转后位置)互换
 * len必须去2的幂
 */
void change(Complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2;i < len-1; i++)
    {
        if(i < j)swap(y[i],y[j]);
        //交换互为小标反转的元素,i<j保证交换一次
        //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
}
/*
 * 做FFT
 * len必须为2^k形式,
 * on==1时是DFT,on==-1时是IDFT
 */
void fft(Complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2; h <= len; h <<= 1)
    {
        Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j = 0;j < len;j+=h)
        {
            Complex w(1,0);
            for(int k = j;k < j+h/2;k++)
            {
                Complex u = y[k];
                Complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0;i < len;i++)
            y[i].r /= len;
}
 Complex x1[maxn];
 Complex x2[maxn];

 char str1[maxn/2];
 char str2[maxn/2];
 int sum[maxn];

int main()
{
#ifndef ONLINE_JUDGE
    freopen("coco.txt","r",stdin);
    freopen("lala.txt","w",stdout);
#endif
     while(scanf("%s%s",str1,str2)!=EOF)
     {
        int len1 = strlen(str1);
        int len2 = strlen(str2);
        int len = 1;

        while(len < len1*2 || len < len2*2)len<<=1;

        for(int i = 0;i < len1;i++)
            x1[i] = Complex(str1[len1-1-i]-'0',0);
        for(int i = len1;i < len;i++)
            x1[i] = Complex(0,0);

        for(int i = 0;i < len2;i++)
            x2[i] = Complex(str2[len2-1-i]-'0',0);
        for(int i = len2;i < len;i++)
            x2[i] = Complex(0,0);
        //求DFT
        fft(x1,len,1);
        fft(x2,len,1);

        for(int i = 0;i < len;i++)
            x1[i] = x1[i]*x2[i];
        fft(x1,len,-1);

        for(int i = 0;i < len;i++)
            sum[i] = (int)(x1[i].r+0.5);
        for(int i = 0;i < len;i++)
        {
            sum[i+1]+=sum[i]/10;
            sum[i]%=10;
        }
        len = len1+len2-1;
        while(sum[len] <= 0 && len > 0)len--;
        for(int i = len;i >= 0;i--)
            printf("%d",sum[i]);
        printf("\n");

     }


    return 0;
}

HDU 2034 是一道经典的 A-B Problem 题目,通常涉及简单的数学运算或者字符串处理逻辑。以下是对此类问题的分析以及可能的解决方法。 ### HDU 2034 的题目概述 该题目要求计算两个数之间的差值 \(A - B\) 并输出结果。需要注意的是,输入数据可能存在多种情况,因此程序需要能够适应不同的边界条件和特殊情况[^1]。 #### 输入描述 - 多组测试数据。 - 每组测试数据包含两行,分别表示整数 \(A\) 和 \(B\)。 #### 输出描述 对于每组测试数据,输出一行表示 \(A - B\) 的结果。 --- ### 解决方案 此类问题的核心在于正确读取多组输入并执行减法操作。以下是实现此功能的一种常见方式: ```python while True: try: a = int(input()) b = int(input()) print(a - b) except EOFError: break ``` 上述代码片段通过循环不断接收输入直到遇到文件结束符 (EOF),适用于批量处理多组测试数据的情况。 --- ### 特殊考虑事项 尽管基本思路简单明了,在实际编码过程中仍需注意以下几点: 1. **大数值支持**:如果题目中的 \(A\) 或 \(B\) 可能非常大,则应选用可以容纳高精度的数据类型来存储这些变量。 2. **负数处理**:当 \(B>A\) 导致结果为负时,确保程序不会因符号错误而失效。 3. **异常捕获**:为了防止运行期间由于非法字符或其他意外状况引发崩溃,建议加入必要的错误检测机制。 --- ### 示例解释 假设给定如下样例输入: ``` 5 3 7 2 ``` 按照以上算法流程依次完成各步操作后得到的结果应当分别为 `2` 和 `5`。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值