[机器学习]Lecture 3:Why deep

目录

Validation

Why Deep?

Review: Why Hidden layer?

Deeper is Better


Validation

——I used a validation set, but my model still overfitted?

如果用validation set决定模型的时候,待选择的模型太多了,即|Hval|的值太大,仍然有可能会overfitting,原因如下图:

Why Deep?

回顾Lecture2的内容:如何在smaller|H|的时候,仍然有一个small loss,这是一个鱼与熊掌如何兼得的问题,而深度学习可以做到这件事情。

  • Review: Why Hidden layer?

我们可以用piecewise linear function去逼近任何的function,这部分在前面的课程有做过详细笔记,如下图:

可以用Sigmoid Function去逼近上图中蓝色的阶梯型Function,蓝色的阶梯型Function又被称作Hard Sigmoid Function。两个Relu Function可以组成一个Hard Sigmoid Function。

  • Deeper is Better

Fat + Short v.s. Thin + Tall:

一个Hidden layer就可以表示任何的Function,但是使用deep structure会更加effective。

对于同一个Function,可以使用高瘦的network产生这个Function,也可以使用矮胖的network产生这个Function,使用高瘦network的参数量会少于使用矮胖network的参数量。

下面举一个直观的例子,对于下图右边的Function,Deep structure需要2K个参数,而Shallow structure需要2^k个参数。所以Deep structure会有smaller|H|,不容易overfitting。

综上,Deep structure相比Shallow structure会更加effective,并且它的|H|也更加smaller,Deep learning做到了鱼与熊掌兼得。

To learn more: Deep networks outperforms shallow ones whenthe required functions are complex and regular. Deep is exponentially better than shallow evenwhen y =x^2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值