高等数学:第三章 微分中值定理与导数的应用(2)函数单调性 极值 最大值 最小值

§3.4  函数的单调性

一、从几何图形上看函数的单调性

运行matlab程序gs0303.m,可得到函数与它的导函数上的图象,从图形上可以观察到:

函数上是单调减少,在上是单调增加

其导函数小于零,在大于零

函数的单调性是否与导函数的符号有关呢?为此,我们进一步地作图,希望从中获得更多的感性认识。

函数上单调增加(减少),则它的图形是一条沿轴正向上升(下降)的曲线, 曲线上各点处的切线之斜率均为正的(负的),即:

  ()

这表明:函数的单调性确实与其导数的符号有关,因此,可以利用导数的符号来判定函数的单调性。

二、函数单调性的判别法

设函数上连续, 在上可导,,则

若在,则,从而 

即:   函数单调增加

若在,则,从而 

即:   函数单调减少

综上讨论, 我们有如下结论:

函数单调性判别法

设函数上连续, 在上可导,

(1)、若在, 则上单调增加;

(2)、若在, 则上单调减少。

注明:

1、判别法中的闭区间若换成其它各种区间(包括无穷区间)结论仍成立。

2、以后把函数单调的区间称之为函数的单调区间

【例1】讨论函数的单调性。

 解:函数的定义域为, 且

时, , 故函数在上单调减少;

时, , 故函数在上单调增加。

【例2】讨论函数的单调性。

解: 函数的定义域为

时, , ,  故函数在上单减;

时,   ,  ,  故函数在上单增。

因此,可以通过求函数的一阶导数其符号不确定的点,将函数的定义域分划成若干个部分区间,再判定函数一阶导数在这些部分区间上的符号,继而可决定函数在这些部分区间上的单调性。

【例3】试确定函数  的单调区间。

解: 当时,函数无定义, 故函数在处不可导;

时, 导函数为 

 得: 

于是, 点将函数定义域(  )分划成四个区间 ,函数在这四个区间上的单调性如下:

上, ,   函数单增;

   上, ,  函数单减;

     上, ,  函数单减;

  上,  ,  函数单增。

【例4】讨论函数的单调性。

【结论】

一般地,如果在某区间上的有限个点处为零, 而在其余各点处均为正(或负)时,那么在该区间上仍是单调增加(或单调减少)的。

利用函数的单调性可以证明较为复杂的函数不等式。

【例5】试证明:当时, 有 

解:作辅助函数 

时,   ,  

故  

上单调增加,从而有 

而 

于是 上也单调增加。

从而有 

即     

该证明方法十分典型,对于一些较精细的函数不等式的证明可借助些法。





§3.5  函数的极值及其求法

一、极值的定义

设函数在区间内有定义,点内的一点。若存在点的一个邻域,对于该邻域内任何异于的点,不等式

   ()

成立,称是函数的一个极大值(极小值);称点是函数 的极大值点(极小值点)

函数的极大值与极小值统称为函数的极值;

使函数取得极值的点统称为极值点

关于函数的极值,如下几点注记是十分重要的。

1、函数的极值概念是一个局部概念

如果是函数的一个极大值,那只是对的一个局部范围来说的一个最大值。但对于整个函数的定义域来说,就不一定是最大值了。

对于极小值也是类似的。

2、极小值有可能较极大值更大。

如图: 是极大值, 而是极小值 )

从图中可看出,在函数取得极值之处,曲线具有水平的切线换句话说:函数在取得极值的点处,其导数值为零

二、函数取得极值的几个重要定理

定理一(可导函数取得极值的必要条件)

设函数在点处具有导数,且在处取得极值,则

证明:不妨设是极大值 (极小值的情形也可类似地证明)

据极大值定义, 在的某个邻域内, 对一切异于的点

均有          成立。

时,

因此 

时,

因此 

从而   

使导数为零的点(即方程的实根)称为函数驻点

定理一的结论可换成等价的说法:

可导函数的极值点必定是为驻点。

反过来,函数的驻点不一定就是函数的极值点,它最多只是可能的极值点

定理二函数取得极值的第一充分条件 )

设函数在点的某个邻域内可导,且

(1)、当左侧的值时,恒为正;当右侧的值时,恒为负,那么,处取得极大值;

(2)、当左侧的值时,恒为负;当右侧的值时,恒为正,那么,处取得极小值;

(3)、当左右两侧的值时,恒正或恒负,那么,处没有极值。

下面,我们给出第一充分条件的记忆方法:

一般 + 号往往表示得分,盈利等吉利的事情,蕴含有增加的意思,我们可解释 + 号表示走好运,走上坡路

而 - 号又往往表示扣分、亏损等不吉利的事情,它含有减少的意思,我们可解释 - 号为走背运,走下坡路

附近由左变到右时,符号由正变到负(),则曲线先走上坡路,再走下坡路,呈  型,故是极大值;

附近由左变到右时,符号由负变到正(),则曲线先走下坡路,再走上坡路,呈  型,故是极小值。

【例1】求函数的极值。

解:函数的定义域为,且

令 , 可得到函数的可能极值点(驻点):

当 时,  

当    时,  

故 是函数的极大值点,且函数的极大值为

当  时,

故  是函数的极小值点,且函数的极小值为

定理三(函数取得极值的第二充分条件)

设函数在点处具有二阶导数, 且,  则

(1)、当时, 函数处取得极大值;

(2)、当时, 函数处取得极小值。

下面对情形(1)给出证明, 情形(2)的证明完全类似。

由于  ,有

据函数极限的性质, 当的一个充分小的邻域内且时,

而  ,即

于是,对于这邻域内不同于来说, 的符号相反,

即:当, 时,  

, 时,  

据定理二知:在点处取极大值。

对极值判定的第二充分条件来说,如下注记是重要的。

1、对于二阶可导的函数,它在驻点的二阶导数的符号可判定函数值为何种极值。

如果,则第二充分条件失效。请看下述反例:

这三个函数在原点处的一阶、二阶导数均为零,它们分别有极小值、极大值,无极值。

2、极值判定的第二充分条件的记忆方法

【例2】求函数的极值。

解:

, 得驻点       

, 函数有极小值 

而 , 用第二充分条件无法进行判定, 考察函数的一阶导数在的左右两侧邻近值的符号。

的左右侧邻近的值时,

取 1 的左右侧邻近的值时,

故函数在处没有极值。

三、函数在不可导点处的极值判定

前面的讨论中, 都假定了函数在所讨论的区间内是可导的这一条件。如果函数在某些点处的导数不存在, 函数在这些点处有可能取得极值吗?

换句话说,使函数不可导的点,是可疑的极值点吗?

【例4】讨论函数的极值。

这两例所反映的事实说明:

函数的不可导点,也是函数可疑的极值点,在讨论函数的极值时,应予以考虑。

六、结论

求函数在定义区间上的极值,先找出函数在该区间上的可疑极值点(使函数的一阶导数为零或不存在的点),再运用极值判定的第一或第二充分条件,对这些可疑极值点是否确实为极值点进行判定。







§3.6  最小值与最大值问题

一、闭区间上连续函数的最值

综上讨论,函数取得最值的点只能是区间的端点或开区间内导数为零、导数不存在的点。计算函数在这些点处的函数值,比较它们的大小就可得到函数的最值。

例1求函数上的最值。

二、非闭区间上定义的函数最值

对于非闭区间上定义的函数,它有可能存在着最值也有可能不存在着最值,这就给求函数最值带来了困难。

探讨函数最值,可先求函数的可疑极值点(驻点,导数不存在的点),并讨论由这些点所形成的区间上函数的单调性,再利用函数的性态来判断函数在这些可疑点处是否有最值。

下面以例子来说明具体求法。

例2求函数 在定义区间 上的最值。

例3求函数在 的最值。

三、实用最值应用问题

利用求函数的最值来处理实际问题,有如下几个步骤:

1、据实际问题列出函数表达式及它的定义区间;

2、求出该函数在定义区间上的可能极值点(驻点和一阶导数不存在的点);

3、讨论函数的单调性,确定函数在可能极值点处是否取得最值。

例4试求单位球的内接圆锥体体积最大者的高,并求此体积的最大值。

解:设球心到锥底面的垂线长为,则圆锥的高为,圆锥面底面半径为,圆锥体积为

由 ,得驻点

上,,函数单增;

上,,函数单减,

是函数的最大值点,是函数的最大值。

于是最大的体积为,此时的高为




from: http://sxyd.sdut.edu.cn/gaoshu1/

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值