【基础知识整理】什么是启发式?

启发式方法是一种实用的问题解决策略,在无法找到最优解时提供足够好的解决方案。这些方法通常包括使用经验法则、直观判断等手段来简化决策过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础知识思考整理
http://blog.csdn.net/aganlengzi/article/details/77986138

启发式方法:

A heuristic technique , often called simply a heuristic, is any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect, but sufficient for the immediate goals. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision. Examples of this method include using a rule of thumb, an educated guess, an intuitive judgment, guesstimate, stereotyping, profiling, or common sense.

启发式方法(不特指算法),是用于解决问题的某种符合实际能满足需求但不能保证最优的方法。在不可能得到或者很难得到问题的最优解时,启发式方法是能够加速得到可用解的高效方法。

<think>好的,我现在需要回答用户关于头歌平台中人工智能启发式搜索算法教程实现的问题。首先,我要确保自己正确理解用户的需求。用户提到了头歌平台、人工智能、启发式搜索算法、教程和实现这几个关键词,所以需要围绕这些点展开。 首先,我需要回忆一下头歌平台的相关资料。根据用户提供的引用,引用[1]提到A算法是Nilsson提出的最佳图搜索算法,使用评估函数f(n)=g(n)+h(n),其中h(n)是到目标状态的最优路径代价。引用[2]解释了启发式搜索与一致代价搜索的区别,强调f(n)和g(n)的不同作用。引用[3]则涉及头歌平台的一个实验,要求输出最短路径,并用0、1、8标记区域。这些引用都是关于启发式搜索在头歌平台上的应用,特别是A*算法。 接下来,我需要整理这些信息,按照用户的要求结构清晰、分步骤说明。用户可能需要知道头歌平台上的教程是如何教授启发式搜索的,包括理论知识和代码实现。因此,我的回答应该包括理论部分(如A*算法的原理、评估函数)和实践部分(如代码示例和实验指导)。 在组织内容时,要确保行内数学表达式用$...$格式,比如$f(n)=g(n)+h(n)$。独立公式用$$...$$,并单独成段。例如,在解释评估函数时,需要正确使用LaTeX格式。同时,回答中要引用提供的引用资料,在适当的位置添加引用标识,如[^1]、[^2]、[^3]。 然后,我需要考虑用户可能遇到的问题。例如,用户可能想知道如何在头歌平台上具体实现A*算法,或者如何理解评估函数中各部分的作用。因此,在回答中需要提供具体的步骤,比如定义节点类、实现优先队列、编写启发函数等,并结合代码示例进行说明。 同时,用户要求生成相关问题,我需要根据内容提出相关的问题,如算法优化、应用场景等。这些问题应该与头歌平台的教学内容相关,帮助用户进一步学习。 最后,检查回答是否符合所有系统级指令:正确使用LaTeX格式、中文回答、引用标识、问题生成等。确保没有遗漏任何要求,比如代码块的使用和引用位置的正确性。</think>### 头歌平台中启发式搜索算法教程内容梳理 头歌平台关于人工智能的启发式搜索算法教程主要围绕**A*算法**展开,包含以下核心内容: --- #### 一、A*算法理论基础 1. **评估函数定义** A*算法的核心是评估函数: $$f(n) = g(n) + h(n)$$ - $g(n)$:从初始状态到当前状态的实际路径代价 - $h(n)$:当前状态到目标状态的**启发式估计代价**(需满足可采纳性,即$h(n) \leq h^*(n)$,其中$h^*(n)$为真实最优代价)[^1] 2. **与一般启发式搜索的区别** A*算法通过优先队列按$f(n)$排序节点,而一致代价搜索按$g(n)$排序。A*的$f(n)$融合了实际代价和启发式估计,能更高效地引导搜索方向[^2]。 --- #### 二、头歌平台实验实现步骤 以下为头歌平台“最短路径规划”实验的实现框架(Python示例): ```python class Node: def __init__(self, pos, parent=None): self.pos = pos # 当前坐标 (x,y) self.parent = parent self.g = 0 # 实际代价 self.h = 0 # 启发式估计代价 self.f = 0 # f(n) = g(n) + h(n) def __lt__(self, other): return self.f < other.f # 优先队列按f值排序 def heuristic(a, b): # 曼哈顿距离作为启发函数(需满足可采纳性) return abs(a[0] - b[0]) + abs(a[1] - b[1]) def a_star(grid, start, end): open_list = [] heapq.heappush(open_list, start) closed_set = set() while open_list: current = heapq.heappop(open_list) if current.pos == end.pos: return reconstruct_path(current) # 回溯路径 closed_set.add(current.pos) for neighbor in get_neighbors(grid, current): if neighbor.pos in closed_set: continue tentative_g = current.g + 1 # 假设每步代价为1 if neighbor not in open_list or tentative_g < neighbor.g: neighbor.g = tentative_g neighbor.h = heuristic(neighbor.pos, end.pos) neighbor.f = neighbor.g + neighbor.h heapq.heappush(open_list, neighbor) return None # 无可行路径 ``` **关键点说明**: - 地图用二维数组`grid`表示,`0`为可通行区域,`1`为障碍物[^3] - 路径标记方法:将最终路径上的坐标值设为`8` - 启发函数选择:实验中常用曼哈顿距离或欧氏距离,需根据场景选择可采纳的$h(n)$ --- #### 三、教学实验目标 头歌平台通过以下任务训练学生能力: 1. 理解启发式函数对搜索效率的影响 2. 实现优先级队列管理(对比DFS/BFS) 3. 分析算法复杂度与路径最优性 4. 掌握路径回溯与可视化方法(如矩阵标记`8`) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值