TensorFlow-3: 用 feed-forward neural network 识别数字

原创 2017年04月26日 10:38:47

今天继续看 TensorFlow Mechanics 101:
https://www.tensorflow.org/get_started/mnist/mechanics

完整版教程可以看中文版tutorial:
http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_tf.html

这一节讲了使用 MNIST 数据集训练并评估一个简易前馈神经网络(feed-forward neural network)

input,output 和前两节是一样的:即划分数据集并预测图片的 label

data_sets.train 55000个图像和标签(labels),作为主要训练集。
data_sets.validation    5000个图像和标签,用于迭代验证训练准确度。
data_sets.test  10000个图像和标签,用于最终测试训练准确度(trained accuracy)。

主要有两个代码:

mnist.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist.py

  • 构建一个全连接网络,由 2 个隐藏层,1 个 `softmax_linearv 输出构成
  • 定义损失函数,用 `cross entropyv
  • 定义训练时的优化器,用 GradientDescentOptimizer
  • 定义评价函数,用 tf.nn.in_top_k

fully_connected_feed.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/fully_connected_feed.py

  • placeholder_inputs 传入 batch size,得到 image 和 label 的两个placeholder
  • 定义生成 feed_dict 的函数,key 是 placeholders,value 是 data
  • 定义 do_eval 函数,每隔 1000 个训练步骤,就对模型进行以下评估,分别作用于训练集、验证集和测试集
  • 训练时:
    • 导入数据
    • 得到 image 和 label 两个 placeholder
    • 传入 mnist.inference 定义的 NN, 得到 predictions
    • 将 predictions 传给 mnist.loss 计算 loss
    • loss 传给 mnist.training 进行优化训练
    • 再用 mnist.evaluation 评价预测值和实际值

代码中涉及到下面几个函数:

with tf.Graph().as_default():
即所有已经构建的操作都要与默认的 tf.Graph 全局实例关联起来,tf.Graph 实例是一系列可以作为整体执行的操作

summary = tf.summary.merge_all():
为了释放 TensorBoard 所使用的 events file,所有的即时数据都要在图表构建时合并至一个操作 op 中,每次运行 summary 时,都会向 events file 中写入最新的即时数据

summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph):
用于写入包含了图表本身和即时数据具体值的 events file。

saver = tf.train.Saver():
就是向训练文件夹中写入包含了当前所有可训练变量值 checkpoint file

with tf.name_scope('hidden1'):
主要用于管理一个图里面的各种 op,返回的是一个以 scope_name 命名的 context manager,一个 graph 会维护一个 name_space 的堆,实现一种层次化的管理,避免各个 op 之间命名冲突。例如,如果额外使用 tf.get_variable() 定义的变量是不会被 tf.name_scope() 当中的名字所影响的

tf.nn.in_top_k(logits, labels, 1):
意思是在 K 个最有可能的预测中如果可以发现 true,就将输出标记为 correct。本文 K 为 1,也就是只有在预测是 true 时,才判定它是 correct。


推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

版权声明:本文为博主原创文章,未经博主允许不得转载。

TensorFlow-2: 用 CNN 识别数字

本文结构: CNN 建立模型 code 昨天只是用了简单的 softmax 做数字识别,准确率为 92%,这个太低了,今天用 CNN 来提高一下准确率。关于 CNN,可以看这篇:图解何为CNN简单看一...

TensorFlow-9-词的向量表示

今日资料: https://www.tensorflow.org/tutorials/word2vec 中文版: http://wiki.jikexueyuan.com/project/tens...

Introduction to neural network —— C语言实现BP神经网络识别数字

Introduction to nerual network                  基本上玩过数模或者模式识别的研究生就会知道神经网络这个新兴的技术,当然多数人也就只会在matl...

Neural Network(神经网络)实例--手写数字识别

本实例整理自斯坦福机器学习课程课后练习ex3本例是对一个手写体的数据集(0-9)进行分类,其最终实现的效果同上一个实例相同。只是两者在实现方式上有所不同。 In the previous part...

人脸识别方向论文笔记(3)-- Sparsifying Neural Network Connections for Face Recognition

原文地址:

TensorFlow Neural Network Lab

TensorFlow Neural Network Lab TensorFlow Lab 我们为你准备了一个 Jupyter...

机器学习实验(十):基于WiFi fingerprints用自编码器(Autoencoders)和神经网络(Neural Network)进行定位_1(tensorflow版)

Autoencoders and Neural Network for Place recognition with WiFi fingerprints 本文来源于Michał Nowicki⋆ ...

用matlab训练数字分类的深度神经网络Training a Deep Neural Network for Digit Classification

This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify ima...

TensorFlow-1: 如何识别数字

识别数字在机器学习任务中的地位和 Hello World 在编程中是一样的。主要步骤: 获得数据:from Yann LeCun’s website 建立模型:softmax 定义 tensor,va...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:TensorFlow-3: 用 feed-forward neural network 识别数字
举报原因:
原因补充:

(最多只允许输入30个字)