TensorFlow-3: 用 feed-forward neural network 识别数字

原创 2017年04月26日 10:38:47

今天继续看 TensorFlow Mechanics 101:
https://www.tensorflow.org/get_started/mnist/mechanics

完整版教程可以看中文版tutorial:
http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_tf.html

这一节讲了使用 MNIST 数据集训练并评估一个简易前馈神经网络(feed-forward neural network)

input,output 和前两节是一样的:即划分数据集并预测图片的 label

data_sets.train 55000个图像和标签(labels),作为主要训练集。
data_sets.validation    5000个图像和标签,用于迭代验证训练准确度。
data_sets.test  10000个图像和标签,用于最终测试训练准确度(trained accuracy)。

主要有两个代码:

mnist.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist.py

  • 构建一个全连接网络,由 2 个隐藏层,1 个 `softmax_linearv 输出构成
  • 定义损失函数,用 `cross entropyv
  • 定义训练时的优化器,用 GradientDescentOptimizer
  • 定义评价函数,用 tf.nn.in_top_k

fully_connected_feed.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/fully_connected_feed.py

  • placeholder_inputs 传入 batch size,得到 image 和 label 的两个placeholder
  • 定义生成 feed_dict 的函数,key 是 placeholders,value 是 data
  • 定义 do_eval 函数,每隔 1000 个训练步骤,就对模型进行以下评估,分别作用于训练集、验证集和测试集
  • 训练时:
    • 导入数据
    • 得到 image 和 label 两个 placeholder
    • 传入 mnist.inference 定义的 NN, 得到 predictions
    • 将 predictions 传给 mnist.loss 计算 loss
    • loss 传给 mnist.training 进行优化训练
    • 再用 mnist.evaluation 评价预测值和实际值

代码中涉及到下面几个函数:

with tf.Graph().as_default():
即所有已经构建的操作都要与默认的 tf.Graph 全局实例关联起来,tf.Graph 实例是一系列可以作为整体执行的操作

summary = tf.summary.merge_all():
为了释放 TensorBoard 所使用的 events file,所有的即时数据都要在图表构建时合并至一个操作 op 中,每次运行 summary 时,都会向 events file 中写入最新的即时数据

summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph):
用于写入包含了图表本身和即时数据具体值的 events file。

saver = tf.train.Saver():
就是向训练文件夹中写入包含了当前所有可训练变量值 checkpoint file

with tf.name_scope('hidden1'):
主要用于管理一个图里面的各种 op,返回的是一个以 scope_name 命名的 context manager,一个 graph 会维护一个 name_space 的堆,实现一种层次化的管理,避免各个 op 之间命名冲突。例如,如果额外使用 tf.get_variable() 定义的变量是不会被 tf.name_scope() 当中的名字所影响的

tf.nn.in_top_k(logits, labels, 1):
意思是在 K 个最有可能的预测中如果可以发现 true,就将输出标记为 correct。本文 K 为 1,也就是只有在预测是 true 时,才判定它是 correct。


推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Markdown生成左边框目录

自从接触了Markdown后就一直用这种语言写学习笔记。 但是一直在纠结如何生成方便的目录。 下面是我搞得一个简单的模板可以生成固定在屏幕左边的目录。 就是这种第一步,编辑器首先,需要一个可以自...

生成带有目录的Markdown格式文档

什么是MarkdownMarkdown 是一种轻量级的「标记语言」,它的优点很多,目前也被越来越多的写作爱好者,撰稿者广泛使用。使用 Markdown 的优点 专注你的文字内容而不是排版样式。 轻松的...

【LEETCODE】148- Sort List [Python]

Sort a linked list in O(n log n) time using constant space complexity. 题意: 对一个链表排序,O(n log n) ...

经典递归解决汉诺塔问题 python实现

什么是汉诺塔? 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始...

使用CSDN Markdown写博客

Markdown介绍 语法说明 表格 定义列表 代码块 脚注 目录 UML 图 离线写博客 浏览器兼容 快捷键 总结 1. Markdown介绍 Markdown 是一种轻量级标记语言,...

window7(64bit)环境下安装基于TensorFlow后端的Keras 教程

window7(64bit)环境下安装基于TensorFlow后端的Keras 教程(CPU版)本教程是基于windows7 64位系统 使用anaconda的方法安装TensorFlow,并且安装...

极限学习机(ELM) 算法及MATLAB程序实现

极限学习机 单 隐 藏 层 反 馈 神 经 网 络 具 有 两 个 比 较 突 出 的 能 力 ( 1) 可以直接从训练样本中拟 合 出 复 杂 的 映 射 函 数 f : x ^ t ( 2 ) ...

python3.5《机器学习实战》学习笔记(一):k近邻算法

转载请注明作者和出处:http://blog.csdn.net/u013829973 系统版本:window 7 (64bit) python版本:python 3.5 IDE:Spyder ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)