TensorFlow-5: 用 tf.contrib.learn 来构建输入函数

原创 2017年04月26日 10:41:31

学习资料:
https://www.tensorflow.org/get_started/input_fn

对应的中文翻译:
http://studyai.site/2017/03/06/%E3%80%90Tensorflow%20r1.0%20%E6%96%87%E6%A1%A3%E7%BF%BB%E8%AF%91%E3%80%91%E9%80%9A%E8%BF%87tf.contrib.learn%E6%9D%A5%E6%9E%84%E5%BB%BA%E8%BE%93%E5%85%A5%E5%87%BD%E6%95%B0/


今天学习用 tf.contrib.learn 来建立 input funciton, 并用 DNN 对 Boston Housing 数据集进行回归预测。

问题:

  • 给一组波士顿房屋价格数据,要用神经网络回归模型来预测房屋价格的中位数
  • 数据集可以从官网教程下载:
    https://www.tensorflow.org/get_started/input_fn
  • 它包括以下特征:
  • 我们需要预测的是MEDV这个标签,以每一千美元为单位

一共有 5 步:

  • 导入 CSV 格式的数据集
  • 建立神经网络回归模型
  • 用训练数据集训练模型
  • 评价模型的准确率
  • 对新样本数据进行分类

代码:
地址:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston.py

"""DNNRegressor with custom input_fn for Housing dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools

import pandas as pd
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)

COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",
           "dis", "tax", "ptratio", "medv"]
FEATURES = ["crim", "zn", "indus", "nox", "rm",
            "age", "dis", "tax", "ptratio"]
LABEL = "medv"


def input_fn(data_set):
  feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES}
  labels = tf.constant(data_set[LABEL].values)
  return feature_cols, labels


def main(unused_argv):
  # Load datasets
  training_set = pd.read_csv("boston_train.csv", skipinitialspace=True,
                             skiprows=1, names=COLUMNS)
  test_set = pd.read_csv("boston_test.csv", skipinitialspace=True,
                         skiprows=1, names=COLUMNS)

  # Set of 6 examples for which to predict median house values
  prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True,
                               skiprows=1, names=COLUMNS)

  # Feature cols
  feature_cols = [tf.contrib.layers.real_valued_column(k)
                  for k in FEATURES]

  # Build 2 layer fully connected DNN with 10, 10 units respectively.
  regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,
                                            hidden_units=[10, 10],
                                            model_dir="/tmp/boston_model")

  # Fit
  regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000)

  # Score accuracy
  ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)
  loss_score = ev["loss"]
  print("Loss: {0:f}".format(loss_score))

  # Print out predictions
  y = regressor.predict(input_fn=lambda: input_fn(prediction_set))
  # .predict() returns an iterator; convert to a list and print predictions
  predictions = list(itertools.islice(y, 6))
  print("Predictions: {}".format(str(predictions)))

if __name__ == "__main__":
  tf.app.run()

今天主要的知识点就是输入函数

在上面的代码中我们可以看到,输入数据时用的是 pandas,可以直接读取 CSV 文件
为了识别数据集中哪些是列,哪些是特征,哪些是预测标签,需要把这三者定义出来

在定义神经网络回归模型时,我们建立一个具有两层隐藏层的神经网络,每一层具有 10 个神经元节点,
接下来就是建立输入函数,它的作用就是把输入数据传递给回归模型,它可以接受 pandas 的 Dataframe 结构,并将特征和标签列作为 Tensors 返回

在训练时,只需要把训练数据集传递给输入函数,用 fit 迭代5000步
评价模型时,也是将测试数据集传递给输入函数,再用 evaluate
预测时,同样将预测数据集传递给输入函数


关于 输入函数:

昨天学到读取 CSV 文件的方法适用于不需要对原来的数据有什么操作的时候
但是当需要对数据进行特征工程时,我们就需要有一个输入函数来把数据的预处理给封装起来,再传递给模型

输入函数的基本框架:

def my_input_fn():

    # Preprocess your data here...

    # ...then return 1) a mapping of feature columns to Tensors with
    # the corresponding feature data, and 2) a Tensor containing labels
    return feature_cols, labels

输入函数必须返回下面两种值:

feature_cols:是一个字典,key 就是特征列的名字,value 就是 tensor,包含了相应的数据

labels:返回包含标签数据的 tensor,即所想要预测的目标

如果特征/标签数据存在pandas数据帧中或numpy数组中,那么需要将其转换为Tensor,然后从 input_fn 中返回。

对于稀疏数据
大多数值为0的数据,应该填充一个 SparseTensor,

下面例子,就是定义了一个具有3行和5列的二维 SparseTensor。在 [0,1] 上的元素的值为 6,[2,4] 上的元素值为 0.5,其他值为 0:

sparse_tensor = tf.SparseTensor(indices=[[0,1], [2,4]],
                                values=[6, 0.5],
                                dense_shape=[3, 5])
[[0, 6, 0, 0, 0]
 [0, 0, 0, 0, 0]
 [0, 0, 0, 0, 0.5]]

推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

TensorFlow-4: tf.contrib.learn 快速入门

学习资料: https://www.tensorflow.org/get_started/tflearn

tensorflow学习笔记(十):sess.run()

session.run()session.run([fetch1, fetch2])import tensorflow as tf state = tf.Variable(0.0,dtype=tf.f...

tensorflow学习笔记(六):TF.contrib.learn大杂烩

这一节介绍一个常用的高级API:tf.contrib_learn。这个API使配置、训练和计算变得更简单。现在依然是依照官方教程进行一些学习和补充。而且程序依然会放在github里。而且从这里开始一直...

05:Tensorflow高级API的进阶--利用tf.contrib.learn建立输入函数

标签(空格分隔): 王小草Tensorflow笔记笔记整理者:王小草 笔记整理时间:2017年2月27日 笔记对应的官方文档:https://www.tensorflow.org/get_star...

tensorflow学习笔记(十六):rnn_cell.py

rnn_cell水平有限,如有错误,请指正!本文主要介绍一下 tensorflow.python.ops.rnn_cell 中的一些类和函数,可以为我们编程所用run_cell._linear()de...

tensorflow学习笔记十四:TF官方教程学习 tf.contrib.learn Quickstart

TensorFlow高级API(tf.contrib.learn)及可视化工具TensorBoard的使用 一.TensorFlow高层次机器学习API (tf.contrib.learn)...

TensorFlow 0.12 Estimators Models Layers学习笔记

TensorFlow在tensorflow.contrib包中有很多封装好的工具,最近在学习中用到了一些模块,在这里做一些笔记。Estimators位于tensorflow.contrib.learn...

人脸检测——滑动窗口篇(训练和实现)

人脸检测:cascade cnn,mtcnn,都可以通过下面代码复现。但是下面的实现是比较low的,后面更新RPN的方法。 注意mtcnn的标签加了回归框,训练时候的输出层要作修改:(回归框的作用还是...

Socket 命令解析

SOCKET() 我们使用系统调用socket()来获得文件描述符: #include #include int socket(int domain,int type,int protoc...

tensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试(MNIST For ML Beginners)

刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)