# TensorFlow－5: 用 tf.contrib.learn 来构建输入函数

• 给一组波士顿房屋价格数据，要用神经网络回归模型来预测房屋价格的中位数
• 数据集可以从官网教程下载：
https://www.tensorflow.org/get_started/input_fn
• 它包括以下特征：
• 我们需要预测的是MEDV这个标签，以每一千美元为单位

• 导入 CSV 格式的数据集
• 建立神经网络回归模型
• 用训练数据集训练模型
• 评价模型的准确率
• 对新样本数据进行分类
"""DNNRegressor with custom input_fn for Housing dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import itertools

import pandas as pd
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)

COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",
"dis", "tax", "ptratio", "medv"]
FEATURES = ["crim", "zn", "indus", "nox", "rm",
"age", "dis", "tax", "ptratio"]
LABEL = "medv"

def input_fn(data_set):
feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES}
labels = tf.constant(data_set[LABEL].values)
return feature_cols, labels

def main(unused_argv):
skiprows=1, names=COLUMNS)
skiprows=1, names=COLUMNS)

# Set of 6 examples for which to predict median house values
skiprows=1, names=COLUMNS)

# Feature cols
feature_cols = [tf.contrib.layers.real_valued_column(k)
for k in FEATURES]

# Build 2 layer fully connected DNN with 10, 10 units respectively.
regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,
hidden_units=[10, 10],
model_dir="/tmp/boston_model")

# Fit
regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000)

# Score accuracy
ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)
loss_score = ev["loss"]
print("Loss: {0:f}".format(loss_score))

# Print out predictions
y = regressor.predict(input_fn=lambda: input_fn(prediction_set))
# .predict() returns an iterator; convert to a list and print predictions
predictions = list(itertools.islice(y, 6))
print("Predictions: {}".format(str(predictions)))

if __name__ == "__main__":
tf.app.run()

def my_input_fn():

# ...then return 1) a mapping of feature columns to Tensors with
# the corresponding feature data, and 2) a Tensor containing labels
return feature_cols, labels

feature_cols：是一个字典，key 就是特征列的名字，value 就是 tensor，包含了相应的数据

labels：返回包含标签数据的 tensor，即所想要预测的目标

sparse_tensor = tf.SparseTensor(indices=[[0,1], [2,4]],
values=[6, 0.5],
dense_shape=[3, 5])
[[0, 6, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0.5]]

## tensorflow学习笔记（十）：sess.run()

session.run()session.run([fetch1, fetch2])import tensorflow as tf state = tf.Variable(0.0,dtype=tf.f...

## tensorflow学习笔记(十六):rnn_cell.py

rnn_cell水平有限,如有错误,请指正!本文主要介绍一下 tensorflow.python.ops.rnn_cell 中的一些类和函数,可以为我们编程所用run_cell._linear()de...

## tensorflow学习笔记十四：TF官方教程学习 tf.contrib.learn Quickstart

TensorFlow高级API(tf.contrib.learn)及可视化工具TensorBoard的使用 一.TensorFlow高层次机器学习API (tf.contrib.learn)...

## TensorFlow 0.12 Estimators Models Layers学习笔记

TensorFlow在tensorflow.contrib包中有很多封装好的工具，最近在学习中用到了一些模块，在这里做一些笔记。Estimators位于tensorflow.contrib.learn...

## Socket 命令解析

SOCKET() 我们使用系统调用socket()来获得文件描述符： #include #include int socket(int domain,int type,int protoc...

## tensorflow学习笔记四：mnist实例--用简单的神经网络来训练和测试（MNIST For ML Beginners）

举报原因： 您举报文章：深度学习：神经网络中的前向传播和反向传播算法推导 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)