dbscan基于密度的空间聚类算法

DBSCAN是一种基于密度的空间聚类算法,能够处理任意形状的聚类。它通过Ε领域和核心对象的概念进行聚类,对密度分布不均衡的数据可能表现不佳,且不适合高维度数据。算法流程包括扫描数据、以核心对象为中心递归扩展簇,直至所有点被处理。
摘要由CSDN通过智能技术生成

参考文献:百度百科 http://baike.baidu.com

我的算法库:https://github.com/linyiqun/lyq-algorithms-lib 

算法介绍

说到聚类算法,大家如果有看过我写的一些关于机器学习的算法文章,一定都这类算法不会陌生,之前将的是划分算法(K均值算法)和层次聚类算法(BIRCH算法),各有优缺点和好坏。本文所述的算法是另外一类的聚类算法,他能够克服BIRCH算法对于形状的限制,因为BIRCH算法偏向于聚簇球形的聚类形成,而dbscan采用的是基于空间的密度的原理,所以可以适用于任何形状的数据聚类实现。

算法原理

在介绍算法原理之前,先介绍几个dbscan算法中的几个概念定义:

Ε领域:给定对象半径为Ε内的区域称为该对象的Ε领域;
核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象;
直接密度可达:对于样本集合D,如果样本点q在p的Ε领域内,并且p为核心对象,那么对象q从对象p直接密度可达。
密度可达:对于样本集合D,给定一串样本点p1,p2….pn,p= p1,q= pn,假如对象pi从pi-1直接密度可达,那么对象q从对象p密度可达。
密度相连:存在样本集合D中的一点o,如果对象o到对象p和对象q都是密度可达的,那么p和q密度相联。

下面是算法的过程(可能说的不是很清楚):

1、扫描原始数据,获取所有的数据点。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值