Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离
1.1. 文本相似度计算在信息检索、数据挖掘、机器翻译、文档复制检测等领域有着广泛的应用1
1. Knn算法实质就是相似度的关系
1.1. 文本相似度计算在信息检索、数据挖掘、机器翻译、文档复制检测等领域有着广泛的应用
数据挖掘
本文详细介绍了KNN算法中的四种关键距离计算方法:欧氏距离、余弦距离、汉明距离和曼哈顿距离。汉明距离在信息传输和信号处理中有广泛应用,曼哈顿距离常用于几何度量空间。此外,文章还提到了SimHash结合汉明距离在文本相似度检测中的作用,以及Jaccard相似性系数和欧几里得距离等其他文本相似度算法。
Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离
1.1. 文本相似度计算在信息检索、数据挖掘、机器翻译、文档复制检测等领域有着广泛的应用1
数据挖掘
656
2387
3070

被折叠的 条评论
为什么被折叠?