引言
这仍然是近期系列文章中的一篇。在这一个系列中,我打算把机器学习中的Logistic回归从原理到应用详细串起来。最初我们介绍了在Python中利用Scikit-Learn来建立Logistic回归分类器的方法
此后,我们对上述文章进行了更深一层的探讨,介绍了利用Logistic回归在自然语言处理中的应用(对微博进行Sentiment Analysis)
从应用角度介绍了Logistic回归之后,我们又从源头介绍了Logistic回归的数学原理
在这篇文章的最后,我们得到了一个似然函数为
L ( w ) = ∏ i = 1 m [ π ( x i ) ] y i [ 1 − π (