数值优化(Numerical Optimization)学习系列-序列二次规划和内点法(SQP、Interior-Point)

本文介绍了数值优化中的序列二次规划(SQP)和内点法,这两种方法用于解决非线性约束最优化问题。SQP通过一系列二次规划子问题逼近全局解,而内点法则通过将约束纳入目标函数逐步求解。文章详细讨论了等式约束和不等式约束的处理方法,并阐述了连续方法和障碍方法在内点法中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

对于非线性约束最优化问题,序列二次规划和内点法是两类非常重要的算法,也是大规模问题的利器。序列二次规划方法将原始问题分解为一系列二次规划问题逐步求解;内点法将将约束添加到目标函数中转换为一系列无约束问题逐步求解。两类算法共同思想将原始问题转换为可求解问题。
1. 序列二次规划概述
2. 内点法概述
3.总结

序列二次规划(SQP)概述

序列二次规划(Sequential Quadratic Programming)对于非线性约束最优化问题是一个非常有效的算法,将原始问题划分为一系列二次规划的子问题进行求解。

本节中介绍的SQP都属于激活集算法,有两种类型的激活-SQP算法,一是IQP,将原始问题转换为一系列不等式约束二次规划;二是EQP,将原始问题转换为一系列等式约束二次规划问题。

大部分的SQP问题分为两个步骤进行求解,第一步通过局部方法寻找有效集;二是通过LineSearch或者TR进行最优化。

局部SQP方法

等式约束问题

问题描述如下

minf(x)s.tc(x)=0
其主要思想是根据当前点 xk 寻找下一个优化点 xk+1 通过转换问题二次规划问题。

思路1,KKT条件

原始问题的拉格朗日方程为 L(x,λ)=f(x)λTc(x) ,根据KKT条件有

F(x,λ)=[f(x)A(x)Tλc(x)]=0
其中 A(x)=[c1(x),c2(x)...cm(x)]
对于等式方程问题可以采用牛顿方程进行求解,迭代步骤如下
[xk+1λk+1
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值