概述
在实际问题中不是所有的目标函数或者约束都是线性的,本节主要介绍对于非线性约束或者目标函数如何有效的求解。
1. 非线性约束问题概述
2. 求解非线性约束常用的思路
3. 总结
非线性约束最优化问题
基本形式表示为
min f(x) s.t ci(x)=0,i∈Eci(x)≥0,i∈I
该类问题的最优解一阶和二阶条件都已介绍过。
后续会介绍几类常见的非线性约束最优化问题
1. QP(Quadratic Programming)问题,即二次规划问题,目标函数是二次的,并且约束为线性约束,该问题的算法也比较成熟,例如有效集算法、内点法和梯度映射算法。该问题常常成为处理其他问题的子步骤。
2. 带惩罚的增强拉格朗日算法,主要思路将目标函数和约束整合到一起,通过求解一系列无约束问题从而逼近原始问题的解。例如对于等式约束问题,可以定义 F(x)=f(x)+u2∑i∈Eci(x)2 。或者 F(x)=f(x)+u∑i∈E|ci(x)| 。对于增强拉格朗日方法,综合考虑原始目标和约束,例如
<