数值优化(Numerical Optimization)学习系列-非线性约束最优化(Nonlinear Constrained Optimization)

本文探讨了非线性约束最优化问题的解决思路,包括有效集算法、变量消减、价值函数、Filter方法以及如何应对Maratos效应。详细介绍了这些方法在处理不等式约束和目标函数优化中的应用,并提供了改进策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

在实际问题中不是所有的目标函数或者约束都是线性的,本节主要介绍对于非线性约束或者目标函数如何有效的求解。
1. 非线性约束问题概述
2. 求解非线性约束常用的思路
3. 总结

非线性约束最优化问题

基本形式表示为

min f(x) s.t  ci(x)=0,iEci(x)0,iI
该类问题的最优解一阶和二阶条件都已介绍过。
后续会介绍几类常见的非线性约束最优化问题
1. QP(Quadratic Programming)问题,即二次规划问题,目标函数是二次的,并且约束为线性约束,该问题的算法也比较成熟,例如有效集算法、内点法和梯度映射算法。该问题常常成为处理其他问题的子步骤。
2. 带惩罚的增强拉格朗日算法,主要思路将目标函数和约束整合到一起,通过求解一系列无约束问题从而逼近原始问题的解。例如对于等式约束问题,可以定义 F(x)=f(x)+u2iEci(x)2 。或者 F(x)=f(x)+uiE|ci(x)| 。对于增强拉格朗日方法,综合考虑原始目标和约束,例如
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值