8.2 矩阵的运算

8.2.1 矩阵的转置(transpose)

  矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线被称为主对角线(main diagonal)。转置是矩阵的重要操作之一,我们将矩阵 A 的转置表示为AT,即 (AT)i,j=Aj,i 。比如,3x2矩阵的转置矩阵就是2x3矩阵。
  

A=A1,1A2,1A3,1A1,2A2,2A3,2AT=[A1,1A1,2A2,1A2,2A3,1A3,2]

  矩阵的转置可以看成是以主对角线为轴的一个镜像。也就是说,转置矩阵是指将 m×n 矩阵的行和列交换后得到的 n×m 矩阵。
  向量可以看作是只有一列的矩阵。对应地,向量的转置可以看作是只是一行的矩阵。有时,我们将通过向量元素作为行矩阵写在文本中,然后使用转置操作将其变为标准的列向量,来定义一个向量,比如 x=[x1,x2,x3]T
  标量可以看作是只有一个元素的矩阵。因此,标量的转置等于它本身, a=aT

8.2.2 两矩阵相加/减

  行列值相同的矩阵才能进行求和或求差运算,其运算规则是两矩阵对应元素的相加或相减运算。只要矩阵的形状一样,我们可以把两个矩阵相加。比如 C=A+B ,其中 Ci,j=Ai,j+Bi,j

8.2.3 标量和矩阵相乘

  标量与矩阵的积,其规则是标量与矩阵中的每个元素进行乘积运算。注意二者不能交换位置,即只能标量在前,矩阵在后。比如 D=aB+c ,其中 Di,j=aBi,j+c

8.2.4 矩阵和矩阵相乘

  矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵 A B的矩阵乘积(matrix product)是第三个矩阵 C 。为了使乘法定义良好,矩阵A的列数必须和矩阵 B 的行数相等。如果矩阵A的形状是 m×n ,矩阵 B 的形状是n×p,那么矩阵 C 的形状是m×p。我们可以通过将两个或多个矩阵并列放置以书写矩阵乘法,例如

C=AB

  具体的,该乘法操作定义为
Ci,j=kAi,kBk,j

  需要注意的是,两个矩阵的标准乘积不是指两个矩阵中对应元素的乘积。不过,那样的矩阵操作确实是存在的,被称为元素对应乘积(element-wise product)或者Hadamard乘积(Hadamard product),记为 AB
  两个相同维数的向量 x y的点积(dot product)可看作是矩阵乘积 xTy 。我们把矩阵乘积 C=AB 中计算 Ci,j 的步骤看作是 A 的第i行和 B 的第j列之间的点积(dot product)。
两个相同维数向量x和y的点积可看作是矩阵乘积 xTy
  矩阵乘积运算有许多有用的性质,从而使矩阵的数学分析更加方便。比如,矩阵乘积服从分配率:
  
A(B+C)=AB+AC

  矩阵乘积也服从结合律:
  
A(BC)=(AB)C

  不同于标量乘积,矩阵乘积并不满足交换律( AB=BA 的情况并非总是满足)。然而,两个向量的点积满足交换律:
  
xTy=yTx

  此外,矩阵的转置有着简单的形式:
(AB)T=BTAT

  利用向量乘积是标量,标量转置是自身的事实,我们可以证明以下公式成立:
xTy=(xTy)T=yTx

8.2.5 线性方程组

  现在我们已经知道了足够多的线性代数符号,可以表达下列线性方程组:

Ax=b(8.11)

  其中 ARm×n 是一个已知矩阵, bRm 是一个已知向量, xRn 是一个我们要求解的未知向量。向量 x 的每一个元素xi都是未知的。矩阵 A 的每一行和b中对应的元素构成一个约束。我们可以把式(8.11)重写为
A1,:x=b1A2,:x=b2Am,:x=bm(8.12)(8.13)(8.14)(8.15)

  或者,更明确地,写作
A1,1x1+A1,2x2+A1,nxn=b1A2,1x1+A2,2x2+A2,nxn=b2Am,1x1+Am,2x2+Am,nxn=bm.(8.16)(8.17)(8.18)(8.19)

  矩阵向量乘积符号为这种形式的方程提供了更紧凑的表示。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值