线性代数系列(十六)--对称矩阵及其正定性

主要内容

  • 对称矩阵

正文

对称矩阵

我们研究一个矩阵,通常就是研究这个矩阵的特征值和特征向量,矩阵的特殊性会在特征值和特征向量上体现出来,这是很重要的一种方法。对于对称矩阵 A A A,根据定义有这样的描述 A = A T A=A^T A=AT。首先我们有这样的事实:

  • 特征值是实数
  • 能够选择出一组相互垂直的特征向量。如果特征值不是重复的话,那么特征向量都是相互垂直的。

这是经过严格证明的,这里不做具体的证明,证明细节参考其他资料。不过我们可以给出一个特殊的例子,那就是单位矩阵,单位矩阵是一个对称矩阵,它有重复的特征值,但是他的特征向量都是相互垂直的。

通常的,我们有 A = S Λ S − 1 A=S\Lambda S^{-1} A=SΛS1。在对称矩阵中,特征向量都是相互垂直的,所以特征矩阵 S S S是一个正交矩阵,可以记为 Q Q Q,因此我们又有下面的公式: A = Q Λ Q − 1 = Q Λ Q T A=Q\Lambda Q^{-1}=Q\Lambda Q^T A=QΛQ1=QΛQT这个公式在数学中叫做谱定理,所谓谱就是矩阵的特征值集合,意味着矩阵是一些纯元素的组合。这种将矩阵分解成特征值和特征向量在力学上常称之为主轴定理。

现在我们考虑为什么特征值是实数。对于实矩阵 A A A,首先有这样的事实 A x = λ x ⇒ A x ˉ = λ ˉ x ˉ Ax=\lambda x\quad\Rightarrow\quad A\bar{x}=\bar{\lambda} \bar{x} Ax=λxAxˉ=λˉxˉ,将它转置之后得到 x ˉ T A T = x ˉ T λ ˉ \bar{x}^TA^T=\bar{x}^T\bar{\lambda} xˉTAT=xˉTλˉ,将 A x = λ x Ax=\lambda x Ax=λx左乘 x ˉ T \bar{x}^T xˉT,将 x ˉ T A T = x ˉ T λ ˉ \bar{x}^TA^T=\bar{x}^T\bar{\lambda} xˉTAT=xˉTλˉ右乘 x x x得到: x ˉ T A x = x ˉ T λ x x ˉ T A T x = x ˉ T λ ˉ x \bar{x}^TAx=\bar{x}^T\lambda x\qquad \bar{x}^TA^Tx=\bar{x}^T\bar{\lambda}x xˉTAx=xˉTλxxˉTATx=xˉTλˉx h a s A = A T has\quad A=A^T hasA=AT w e   g e t x ˉ T λ x = x ˉ T λ ˉ x ⇒ λ ˉ x ˉ T x = λ x ˉ T x we\ get\quad \bar{x}^T\lambda x=\bar{x}^T\bar{\lambda}x\quad\Rightarrow\quad \bar{\lambda}\bar{x}^Tx=\lambda\bar{x}^Tx we getxˉTλx=xˉTλˉxλˉxˉTx=λxˉTx x ˉ T x \bar{x}^Tx xˉTx表示特征向量的长度,它不为零,于是我们有 λ ˉ = λ \bar{\lambda}=\lambda λˉ=λ,这里 λ \lambda λ只能是实数。在这个证明过程中主要使用了 A = A T A=A^T A=AT这一对称矩阵的特性。如果 A A A为复矩阵,那么会有这样的特性 A = A ˉ T A=\bar{A}^T A=AˉT,结合这个特性一样可以证明特征值为实数,由于复矩阵出现的非常少,这里就省略了证明。

我们再次将 A = Q Λ Q T A=Q\Lambda Q^T A=QΛQT展开: [ q 1 q 2 . . . q n ] [ λ 1 λ 2 . . . λ n ] [ q 1 T q 2 T : q n T ] = λ 1 q 1 q 1 T + λ 2 q 2 q 2 T + . . . + λ n q n q n T \begin{bmatrix}q_1&q_2&...&q_n\end{bmatrix}\begin{bmatrix}\lambda_1\\&\lambda_2\\&&...\\&&&\lambda_n\end{bmatrix}\begin{bmatrix}q_1^T\\q_2^T\\:\\q_n^T\end{bmatrix}=\lambda_1q_1q_1^T+\lambda_2q_2q_2^T+...+\lambda_nq_nq_n^T [q1q2...qn]λ1λ2...λnq1Tq2T:qnT=λ1q1q1T+λ2q2q2T+...+λnqnqnT在投影矩阵的时候我们就见过这种形式 q n q n T q_nq_n^T qnqnT,这是一个投影矩阵,它是对称的。从这个展开式上来看,每一个对称矩阵都是相互垂直的投影矩阵的组合。

行列式计算特征值的方式在低阶是不错的,当阶数为4的时候就有些困难了,更高阶的时候会更加的困难。不过对于对称矩阵而言,它提供了一些线索,对称矩阵的主元的符合与特征值的符号是一致的。此外, 主元的乘积等于行列式等于特征值的乘积。

正定矩阵

正定矩阵是对称矩阵的一个子类,它首先是对称矩阵,其次是正定矩阵。所谓正定就是指矩阵的特征值都是正的。因此所有的主元都是正的,这对微分方程比较重要,因为通过特征值的符号(对于对称矩阵还可以通过主元的符号)来判断微分方程是否稳定。所有的主元都是正的,从而造成了所有的子行列式( n n n个)都是正的。

这一节的重点在于将前后讲的所有内容融合到了一起,当然不仅仅限于对称矩阵。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值