矩阵转置 A T A^T AT
矩阵转置即将原矩阵的行变成列,原矩阵的列变成行
类比于R语言的转置函数t()的操作
示例1:
已知
A
=
(
1
2
3
4
)
A=\begin{pmatrix}1&2\\3&4\end{pmatrix}
A=(1324),求
A
T
A^T
AT?
A
T
=
(
1
3
2
4
)
A^T=\begin{pmatrix}1&3\\2&4\end{pmatrix}
AT=(1234)
示例2:
已知
A
=
(
1
0
1
)
A=\begin{pmatrix}1&0&1\end{pmatrix}
A=(101),则
A
T
=
(
1
0
1
)
A^T=\begin{pmatrix}1\\0\\1\end{pmatrix}
AT=⎝⎛101⎠⎞,求
A
T
A
A
T
A^TAA^T
ATAAT?
在涉及转置矩阵的乘法中,先用行乘列要比先用列乘行简单
原式
A
T
A
A
T
A^TAA^T
ATAAT
=
(
1
0
1
)
∗
(
1
0
1
)
∗
(
1
0
1
)
=\begin{pmatrix}1\\0\\1\end{pmatrix}*\begin{pmatrix}1&0&1\end{pmatrix}*\begin{pmatrix}1\\0\\1\end{pmatrix}
=⎝⎛101⎠⎞∗(101)∗⎝⎛101⎠⎞
这里先计算
A
∗
A
T
A*A^T
A∗AT,
A
∗
A
T
=
∗
(
1
0
1
)
∗
(
1
0
1
)
A*A^T=*\begin{pmatrix}1&0&1\end{pmatrix}*\begin{pmatrix}1\\0\\1\end{pmatrix}
A∗AT=∗(101)∗⎝⎛101⎠⎞
=
2
=2
=2
然后计算
A
T
∗
2
A^T*2
AT∗2
=
(
1
0
1
)
∗
2
=
(
2
0
2
)
=\begin{pmatrix}1\\0\\1\end{pmatrix}*2=\begin{pmatrix}2\\0\\2\end{pmatrix}
=⎝⎛101⎠⎞∗2=⎝⎛202⎠⎞
- 性质
( A B ) T = B T ∗ A T (AB)^T=B^T*A^T (AB)T=BT∗AT
∣ A T ∣ = ∣ A ∣ |A^T|=|A| ∣AT∣=∣A∣
矩阵可逆
对于矩阵A,若满足以下条件则存在可逆矩阵
{
A
m
n
,
m
=
n
∣
A
∣
≠
0
o
r
e
x
i
s
t
B
:
A
B
=
E
o
r
B
A
=
E
\begin{cases}A_{mn},m=n\\|A|\ne0\ or\ exist\ B:AB=E\ or\ BA=E\end{cases}
{Amn,m=n∣A∤=0 or exist B:AB=E or BA=E
则称B是A的逆矩阵,A则是可逆矩阵。
例如
(
1
2
3
4
)
\begin{pmatrix}1&2\\3&4\end{pmatrix}
(1324),首先该矩阵是22的方阵,
∣
A
∣
=
−
2
≠
0
|A|=-2\ne0
∣A∣=−2̸=0,因此该矩阵存在可逆矩阵
已知方阵A满足
A
2
−
A
−
2
E
=
0
A^2-A-2E=0
A2−A−2E=0,试求A是否可逆。
思路,A首先满足方阵的条件,但是这里无法求出A的行列式的值,因此,我们要构造AB=E的形式。
原式:
A
2
−
A
−
2
E
=
0
⇒
A
2
−
A
=
2
E
⇒
A
2
−
A
E
=
2
E
⇒
A
(
A
−
E
)
=
2
E
⇒
A
∗
A
−
E
2
=
E
A^2-A-2E=0\Rightarrow A^2-A=2E\Rightarrow A^2-AE=2E\Rightarrow A(A-E)=2E\Rightarrow A*\frac{A-E}2=E
A2−A−2E=0⇒A2−A=2E⇒A2−AE=2E⇒A(A−E)=2E⇒A∗2A−E=E
令
A
−
E
2
=
B
\frac{A-E}2=B
2A−E=B,则AB=E,也即存在矩阵B满足AB=E,因此该矩阵可逆。
求逆矩阵 A − 1 A^{-1} A−1
已知矩阵
A
=
(
1
2
3
4
)
A=\begin{pmatrix}1&2\\3&4\end{pmatrix}
A=(1324),求其逆矩阵
A
−
1
A^{-1}
A−1?
步骤:在待求解矩阵的右边写上同维度的单位矩阵,然后进行相应转化,使得二者交换形式,即把左边的原矩阵转换成单位矩阵,而一起变换的右边的单位矩阵的结果就是原矩阵的逆矩阵
(
1
2
⋮
1
0
3
4
⋮
0
1
)
r2-3r1
→
(
1
2
⋮
1
0
0
−
2
⋮
−
3
1
)
r2 * (-1/2)
→
\begin{pmatrix}1&2&\vdots1&0\\3&4&\vdots0&1\end{pmatrix}\underrightarrow{\text{r2-3r1}}\begin{pmatrix}1&2&\vdots1&0\\0&-2&\vdots-3&1\end{pmatrix}\underrightarrow{\text{r2 * (-1/2)}}
⎝⎛1324⋮1⋮001⎠⎞r2-3r1⎝⎛102−2⋮1⋮−301⎠⎞r2 * (-1/2)
(
1
2
⋮
1
0
0
1
⋮
3
2
−
1
2
)
r1-2r2
→
(
1
0
⋮
−
2
1
0
1
⋮
3
2
−
1
2
)
\begin{pmatrix}1&2&\vdots1&0\\0&1&\vdots\frac{3}{2}&-\frac{1}{2}\end{pmatrix}\underrightarrow{\text{r1-2r2}}\begin{pmatrix}1&0&\vdots-2&1\\0&1&\vdots\frac{3}{2}&-\frac{1}{2}\end{pmatrix}
⎝⎛1021⋮1⋮230−21⎠⎞r1-2r2⎝⎛1001⋮−2⋮231−21⎠⎞
至此,右边的矩阵
(
−
2
1
3
2
−
1
2
)
\begin{pmatrix}-2&1\\\frac{3}{2}&-\frac{1}{2}\end{pmatrix}
(−2231−21),就是原矩阵的逆矩阵
逆矩阵的性质
A
∗
A
−
1
=
E
=
A
−
1
∗
A
A*A^{-1}=E=A^{-1}*A
A∗A−1=E=A−1∗A
即矩阵乘其逆矩阵,或者逆矩阵乘其原矩阵都是单位矩阵E
伴随矩阵的性质
A
A
∗
=
∣
A
∣
E
=
A
∗
A
AA^*=|A|E=A^*A
AA∗=∣A∣E=A∗A
A
∗
A^*
A∗叫做矩阵A的伴随矩阵
矩阵的秩R(A)
对矩阵进行行变换,保证下一行的0比上一行多,直到全为0为止,最后看包含非0行的个数,有几行矩阵的秩就是多少
示例:
求
A
=
(
1
2
3
4
)
A=\begin{pmatrix}1&2\\3&4\end{pmatrix}
A=(1324)的秩R(A)?
原式:
A
=
(
1
2
3
4
)
r2-3r1
→
(
1
2
0
−
2
)
A=\begin{pmatrix}1&2\\3&4\end{pmatrix}\underrightarrow{\text{r2-3r1}}\begin{pmatrix}1&2\\0&-2\end{pmatrix}
A=(1324)r2-3r1(102−2)
因此,该矩阵的秩是2,即
R
(
A
)
=
2
R(A)=2
R(A)=2