【算法详解-小技巧】(1)论模的优化

模是一种很神奇又很恶心的东西qwq
————————————华丽的分割线————————————
序言:
从前有一种很神奇的东西叫做%。
他又神奇又可爱又恶心~~~qwq
————————————华丽的分割线————————————
比如NOIP2013小朋友的数字qwq
题目描述

有 n 个小朋友排成一列。每个小朋友手上都有一个数字,这个数字可正可负。规定每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值。
作为这些小朋友的老师,你需要给每个小朋友一个分数,分数是这样规定的:第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值。
请计算所有小朋友分数的最大值,输出时保持最大值的符号,将其绝对值对 p 取模后输出。

输入输出格式

输入格式:
输入文件为 number.in。
第一行包含两个正整数 n、p,之间用一个空格隔开。
第二行包含 n 个数,每两个整数之间用一个空格隔开,表示每个小朋友手上的数字。
输出格式:
输出文件名为 number.out。
输出只有一行,包含一个整数,表示最大分数对 p 取模的结果。

输入输出样例

输入样例#1:
5 997 
1 2 3 4 5 
输出样例#1:
21
输入样例#2:
5 7 
-1 -1 -1 -1 -1 
输出样例#2:
-1

说明

case 1:
小朋友的特征值分别为 1、3、6、10、15,分数分别为 1、2、5、11、21,最大值 21对 997 的模是 21。
Case 2:
小朋友的特征值分别为-1、-1、-1、-1、-1,分数分别为-1、-2、-2、-2、-2,最大值-1 对 7 的模为-1,输出-1。
对于 50%的数据,1 ≤ n ≤ 1,000,1 ≤ p ≤ 1,000所有数字的绝对值不超过 1000;
对于 100%的数据,1 ≤ n ≤ 1,000,000,1 ≤ p ≤ 10^9,其他数字的绝对值均不超过 10^9。

题解看【蒻爆了的NOIP系列–普及组复赛】(4)NOIP2013普及组复赛题解
首先会发现一个事实:最大值要么等于第1个小盆友要么等于最后一个,所以只要判有没有一个小盆友比第一个小盆友大就好了。
可是由于万恶的mod,所以可能第一个分数小于mod有个分数大于mod被削成小于mod,然后整个程序就莫名其妙的狗了qwq。
这就要用到模的优化了呵呵呵。。。
这题的正确比大小方法:
由于第一个数的最大值小于1000000000,所以如果出了比第一个小盆友还大的特征值就可以先比较再模了。。。
程序也看【蒻爆了的NOIP系列–普及组复赛】(4)NOIP2013普及组复赛题解
————————————华丽的分割线————————————
未完待续。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值