稀疏模型与结构性稀疏模型

原创 2013年09月26日 23:35:48

稀疏编码系列:

---------------------------------------------------------------------------

       

        之前几次讲到了ScSPM,以及改进的LLC。SPM是不带结构性的稀疏编码,而LLC是考虑了结构性的稀疏编码。这次,我想更加全面地介绍一些结构性稀疏的内容。文章的最后会给出几个典型的例子,附加源代码(matlab版本的)和引文的pdf,供大家实验。

        Data representation(不仅仅局限于图像)往往基于如下最小化问题:

         (1)

       其中X是观测到的数据的特征矩阵,D是字典,Z是字典上的描述。约束项使得字典dictionary和描述code具有一定结构性。当D给定时,确定Z的过程叫做representation persuit。当D和Z同时未知时,确定D就是dictionary learning的问题。

      稀疏表示,通常对Z做约束,使得Z中的每一列只能取少量的非0系数。其中最简单的约束项就是

       (2)

        这时问题就变成了LASSO。K-means + Hard-VQ则是一种更严格的稀疏编码,相比L1-norm的约束,Hard-VQ引入了严重的重建误差,所以效果会比较差。这是介绍ScSPM和LLC时候的内容了,这里简单重复一下。

        LASSO被LLC改进的一个很重要原因,就是缺少smooth,其潜在的原因便是Z中的非0元素缺少结构信息(unstructured sparse coding)。所以,后面很多论文的工作就是提出带结构性的稀疏模型。我们将字典D中的每一个码字称为dictionary atoms。令表示为D中一些码字的集合,并将所有这类集合定义为G,即。G中每一个group可以overlap也可以不overlap(这就对应于不同的group sparse model)。而约束项可以表示为:

      (3)

        其中的子向量(只取了group中的元素)。可以看出,对每一个group内部,利用了L2-norm。由于L2-norm本身不小于0,故group之间其实是L1-norm。这样的约束造成了group选择特性,即group成组地取0或不取0。这样仍然不够完美,因为group内部的各个atom不能满足稀疏性。于是就有方法提出,在(3)式之后再加(2)式作为约束,以保证group内的稀疏性,即:

 

   (4)

 

可以看出当且各,(3)就退化成了lasso。

        关于常见的一些结构性稀疏,列举如下:

        Hierarchical Sparse Coding[code | read more],认为非0的系数之间存在层次结构,即group与group之间要么不overlap,如果overlap则一个group必会包含另一个group。一种典型的层次结构就是tree结构

        Overlapping group sparse coding[code |read more],则将约束relax,即允许group之间相互overlap。这个模型据说在genetic data的描述中十分有效,大家不妨试试

        Graph-Guided Sparse Coding[code |read more],建立一个graph,graph中各结点是dictionary中的各个atom。Graph-Guided不同于以上的group sparse coding,它可以加入更加复杂的结构信息。它的形式是:

  (5)

        不同就不同在,这里。从直观上理解,dictionary中的每个atom被视为图中的一个节点,而则代表节点之间边的权重。而权重是可以做很多文章的,比如考虑atom与atom之间在语义层次上的关联、结构层次上的关联,等等。

 

-----------------

作者:jiang1st2010

转载请注明出处:http://blog.csdn.net/jwh_bupt/article/details/12070273

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

稀疏表示与压缩感知

最近在看机器学习时,看到一章关于稀疏学习的,之前有了解过稀疏表示与压缩感知,但是两者之间的差异并不是很清楚,今天就总结一下吧 稀疏表示  稀疏域模型(Sparse-Land Model)即信号的稀...

从稀疏表示到低秩表示(四)

确定研究方向后一直在狂补理论,最近看了一些文章,有了些想法,顺便也总结了representation系列的文章,由于我刚接触,可能会有些不足,愿大家共同指正。 从稀疏表示到低秩表示系列文章包括如下内...

图像的稀疏表示——ScSPM和LLC的总结

上一篇提到了SPM。这篇博客打算把ScSPM和LLC一起总结了。ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-hi...

图像的稀疏表示——ScSPM和LLC的总结

稀疏编码系列: (一)----Spatial Pyramid 小结(二)----图像的稀疏表示——ScSPM和LLC的总结(三)----理解sparse coding(四)----稀疏模型与结构...

理解sparse coding

本文的内容主要来自余凯老师在CVPR2012上给的Tutorial。前面在总结ScSPM和LLC的时候,引用了很多Tutorial上的图片。其实这个Tutorial感觉写的挺好的,所以这次把它大致用自...

Spatial Pyramid Matching 小结

本文介绍了SPM的细节,以及匹配问题与分类问题之间的联系。

稀疏模型与结构性稀疏模型

稀疏编码系列: (一)----Spatial Pyramid 小结(二)----图像的稀疏表示——ScSPM和LLC的总结(三)----理解sparse coding(四)----稀疏模型与结构...

结构化稀疏----Learning with Structured Sparsity(学习与结构化稀疏)

Structured Sparsity是在标准稀疏算法基础上,修改惩罚项而成。约束项为图像先验信息,迫使学习特征按照一定规则排列,行成有结构的字典 Standard sparsityGrou...

稀疏模型与结构性稀疏模型 及ADMM求解

介绍了稀疏结构模型来自  http://blog.csdn.net/jwh_bupt/article/details/12070273 稀疏编码系列: (一)----Spatial P...

特征选择和特征学习中的过完备

ScSPM的论文中提到了码书的过完备(over-complete)。一开始没有太在意过完备有什么问题,今天想了想把这个概念弄明白了。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)