ufldl学习笔记与编程作业:Linear Regression(线性回归)


ufldl学习笔记与编程作业:Linear Regression(线性回归)


ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践。在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl。

于是最近就开始搞这个了,教程加上matlab编程,就是完美啊。

新教程的地址是:http://ufldl.stanford.edu/tutorial/


本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/


从一个最简单的线性回归,可以很清晰地看出建模解决问题的一般思路。

1 定义目标函数;

2 最优化目标函数:求偏导数,求梯度。通过最优化的手段,比如梯度下降,拟牛顿发等。求出最优解。


这里的习题比较特殊,不需要我们自己实现梯度下降法。

而是对参数求出目标函数的偏导数,然后把剩下的最优化工作交给一个叫minFunc的函数去做了。


本来这节只需要读者用最简单的for循环来实现,后面有一个章节才要求用向量化的方法。

由于对线性回归算是比较熟悉了,这里就偷懒,直接用向量化方法实现了。


linear_regression.m代码如下:

function [f,g] = linear_regression(theta, X,y)
  %
  % Arguments:
  %   theta - A vector containing the parameter values to optimize.
  %   X - The examples stored in a matrix.
  %       X(i,j) is the i'th coordinate of the j'th example.
  %   y - The target value for each example.  y(j) is the target for example j.
  %
  
  m=size(X,2);%列数
  n=size(X,1);%行数

  f=0;
  g=zeros(size(theta));
  h = theta' * X;
  f = (1/2)*h*h';%刚开始算错了目标函数,其实目标函数就是代价函数,而不是假设函数
  g = X*((h-y)');

  %
  % TODO:  Compute the linear regression objective by looping over the examples in X.
  %        Store the objective function value in 'f'.
  %
  % TODO:  Compute the gradient of the objective with respect to theta by looping over
  %        the examples in X and adding up the gradient for each example.  Store the
  %        computed gradient in 'g'.
  

结果如下:




对于向量化编程,感觉要对立面所有的矩阵在脑海里都要有一个印象才行。

没印象的话,多在纸上多画几下就好。

此前也写过一篇《 

从零单排入门机器学习:线性回归(linear regression)实践篇

》。

里面提到这点。


其实,今晚做这个作业的时候,遇到两个坑。

第一个是求错f,我以为f是求假设函数的值H,其实是要求目标函数,代价函数。

开始还看到是库函数minFunc里面调用的函数报错,以为人家给的代码有bug。

后来发现自己求错了。

第二个是Octave调用C代码。比如lbfgsAddC.c和lbfgsProdC.c。这两个文件在mex文件夹里。

查了相关资料,才知道,先要编译为mex文件,才能被Octave调用。

m文件一般跟mex同目录。应该也可以指定文件夹,具体没深究。



https://www.gnu.org/software/octave/doc/interpreter/Getting-Started-with-Mex_002dFiles.html#Getting-Started-with-Mex_002dFiles

编译c为mex:

mkoctfile --mex myhello.c

mkoctfile 在Octave的bin目录里,这玩意还要调用gcc和g++。
所以得把gcc和g++所在目录添加到环境变量。




本文作者:linger

本文链接:http://blog.csdn.net/lingerlanlan/article/details/38377023






<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值