《Programming Hive》读书笔记(一)Hadoop和hive环境搭建

《Programming Hive》读书笔记(一)Hadoop和Hive环境搭建

            先把基本的技术和工具学好,才能更高效地思考和工作。

 

Chapter 1.Introduction 简介

Chapter 2.Getting Started 环境配置

 

Hadoop版本会更新,以官方安装教程为准

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html#Standalone_Operation

 

For most of the book, it won’t matterwhich mode you’re using. We’llassume you’re

working on a personal machine in local mode and we’ll discussthe cases where the

mode matters.

 

When working with small data sets, usinglocal mode execution

will make Hive queries much faster. Settingthe property set

hive.exec.mode.local.auto=true;willcause Hive to use this mode more

aggressively, even when you are runningHadoop in distributed or pseudodistributed

mode. To always use this setting, add thecommand to

your $HOME/.hiverc file (see “The.hiverc File” on page 36).

 

对于Hadoop的不同模式,他们在不同的使用情境下性能也是各异的。

少量的数据,用local mode模式性能会更好。

 

 

两个Hadoop程序例子:

1 hadoop jarshare/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.1.jarwordcount input output

这是wordcount词频统计程序。

 

2 hadoop jarshare/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.1.jargrep input output 'dfs[a-z.]+'

这是grep程序,类似linux下的命令。

其中,input为输入目录,output为输出目录。输入目录需要先创建,输出目录不需要创建,且不能已存在。

 

Hive的官方安装

https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-InstallingHivefromaStableRelease

 

其实Hadoop和hive的安装就是解压和配置环境变量。

不过hive需要创建两个目录才能正确运行

$ $HADOOP_HOME/bin/hadoop fs -mkdir       /tmp
  $ $HADOOP_HOME/bin/hadoop fs -mkdir       /user/hive/warehouse
  $ $HADOOP_HOME/bin/hadoop fs -chmod g+w   /tmp
  $ $HADOOP_HOME/bin/hadoop fs -chmod g+w   /user/hive/warehouse

不用hdfs也可以,本地模式直接创建。

另外mkdir需要加上-p才能一次创建多层目录

 

Linux需要注意的是,你用普通用户运行hive,如果hive程序需要在某些目录创建文件或者目录但是没有权限,那么就会运行出错。

比如上面的tmp和warehouse目录。

还有,在当前目录运行hive命令,

会自动在当前目录创建

-rw-rw-r-- 1 linger linger  678 Nov 12 00:03derby.log

drwxrwxr-x 5 linger linger 4096 Nov 12 00:03 metastore_db/

一个文件,一个目录。

如果hive在当前目录没有创建的权限,又会出错。

 

另外发现/etc/profile是用户登录时会自动生效的,

临时生效办法可以 source /etc/profile

另外,root没有登录,所以注销或者重启后,sudo su进入root,发现/etc/profile还是没有生效,目前的解决方法是用source了。不过能用普通用户先用普通用户,用普通用户得注意权限不足的问题。


额外资料:

http://wangshuxing123-126-com.iteye.com/blog/695653

chmod是Linux下设置文件权限的命令,后面的数字表示不同用户或用户组的权限。

一般是三个数字:
第一个数字表示文件所有者的权限
第二个数字表示与文件所有者同属一个用户组的其他用户的权限
第三个数字表示其它用户组的权限。

     权限分为三种:读(r=4),写(w=2),执行(x=1 。 综合起来还有可读可执行(rx=5=4+1)、可读可写(rw=6=4+2)、可读可写可执行(rwx=7=4+2+1)。

     所以,chmod 755 设置用户的权限为:

 

1.文件所有者可读可写可执行                                  --7

2.与文件所有者同属一个用户组的其他用户可读可执行 --5 
3.其它用户组可读可执行                                       --5

 

常见用法:

Chmod –R 777 target_dir

Chmod –R 755 target_dir



本文作者:linger
本文链接:http://blog.csdn.net/lingerlanlan/article/details/41025431



   
<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值