台湾国立大学(林轩田)《机器学习技法》(第6讲)Support Vector Regression (SVR)

课程地址:https://class.coursera.org/ntumlone-001/class 
课件讲义:http://download.csdn.net/download/malele4th/10212756 
注明:文中图片来自《机器学习技法》课程和部分博客 
建议:建议读者学习林轩田老师原课程,本文对原课程有自己的改动和理解

目录

1 kernel ridge regression(核岭回归)
2 support vector regression primal
3 support vector regression dual 
4 summary of kernel models
5 总结

上节课我们主要介绍了Kernel Logistic Regression,讨论如何把SVM的技巧应用在soft-binary classification上。方法是使用2-level learning,先利用SVM得到参数b和w,然后再用通用的logistic regression优化算法,通过迭代优化,对参数b和w进行微调,得到最佳解。然后,也介绍了可以通过Representer Theorem,在z空间中,引入SVM的kernel技巧,直接对logistic regression进行求解。本节课将延伸上节课的内容,讨论如何将SVM的kernel技巧应用到regression问题上。

Kernel Ridge Regression

首先回顾一下上节课介绍的Representer Theorem,对于任何包含正则项的L2-regularized linear model,它的最佳化解w都可以写成是z的线性组合形式,因此,也就能引入kernel技巧,将模型kernelized化。

这里写图片描述

那么如何将regression模型变成kernel的形式呢?我们之前介绍的linear/ridge regression最常用的错误估计是squared error,即err(y,wTz)=(ywTz)2。这种形式对应的解是analytic solution,即可以使用线性最小二乘法,通过向量运算,直接得到最优化解。那么接下来我们就要研究如何将kernel引入到ridge regression中去,得到与之对应的analytic solution。

我们先把Kernel Ridge Regression问题写下来:

这里写图片描述

其中,最佳解w的问题,得到:

这里写图片描述

ridge regression可以写成矩阵的形式,其中第一项可以看成是βn值,这样就解决了kernel ridge regression问题。

求解βn的问题可以写成如下形式:

这里写图片描述

Eaug(β)的解析解为:

β=(λI+K)1y

这里需要关心的问题是(λI+K)的解大部分都是非零值。这个性质,我们之后还会说明。

所以说,我们可以通过kernel来解决non-linear regression的问题。下面比较一下linear ridge regression和kernel ridge regression的关系。

这里写图片描述

如上图所示,左边是linear ridge regression,是一条直线;右边是kernel ridge regression,是一条曲线。大致比较一下,右边的曲线拟合的效果更好一些。这两种regression有什么样的优点和缺点呢?对于linear ridge regression来说,它是线性模型,只能拟合直线;其次,它的训练复杂度是O(d3+d2N),均只与N有关。当N很大的时候,计算量就很大,所以,kernel ridge regression适合N不是很大的场合。比较下来,可以说linear和kernel实际上是效率(efficiency)和灵活(flexibility)之间的权衡。

这里写图片描述

Support Vector Regression Primal

我们在机器学习基石课程中介绍过linear regression可以用来做classification,那么上一部分介绍的kernel ridge regression同样可以来做classification。我们把kernel ridge regression应用在classification上取个新的名字,叫做least-squares SVM(LSSVM)。

先来看一下对于某个问题,soft-margin Gaussian SVM和Gaussian LSSVM结果有哪些不一样的地方。

这里写图片描述

如上图所示,如果只看分类边界的话,soft-margin Gaussian SVM和Gaussian LSSVM差别不是很大,即的到的分类线是几乎相同的。但是如果看Support Vector的话(图中方框标注的点),左边soft-margin Gaussian SVM的SV不多,而右边Gaussian LSSVM中基本上每个点都是SV。这是因为soft-margin Gaussian SVM中的αn非零值较多,那么g的计算量也比较大,降低计算速度。基于这个原因,soft-margin Gaussian SVM更有优势。

这里写图片描述

那么,针对LSSVM中dense β,使得SV不会太多,从而得到和soft-margin SVM同样的分类效果呢?下面我们将尝试解决这个问题。

方法是引入一个叫做Tube Regression的做法,即在分类线上下分别划定一个区域(中立区),如果数据点分布在这个区域内,则不算分类错误,只有误分在中立区域之外的地方才算error。

这里写图片描述

假定中立区的宽度为2ϵ,对应上图中红色标注的距离。

这里写图片描述

通常把这个error叫做ϵ

首先,我们把tube regression中的error与squared error做个比较:

这里写图片描述

然后,将err(y,s)与s的关系曲线分别画出来:

这里写图片描述

上图中,红色的线表示squared error,蓝色的线表示tube error。我们发现,当|s-y|比较小即s比较接近y的时候,squared error与tube error是差不多大小的。而在|s-y|比较大的区域,squared error的增长幅度要比tube error大很多。error的增长幅度越大,表示越容易受到noise的影响,不利于最优化问题的求解。所以,从这个方面来看,tube regression的这种error function要更好一些。

现在,我们把L2-Regularized Tube Regression写下来:

这里写图片描述

这个最优化问题,由于其中包含max项,并不是处处可微分的,所以不适合用GD/SGD来求解。而且,虽然满足representer theorem,有可能通过引入kernel来求解,但是也并不能保证得到sparsity β是sparse的。

这里写图片描述

所以,我们就可以把L2-Regularized Tube Regression写成跟SVM类似的形式:

这里写图片描述

值得一提的是,系数λ即b单独拿了出来,这跟我们之前推导SVM的解的方法是一致的。

现在我们已经有了Standard Support Vector Regression的初始形式,这还是不是一个标准的QP问题。我们继续对该表达式做一些转化和推导:

这里写图片描述

如上图右边所示,即为标准的QP问题,其中ξn分别表示upper tube violations和lower tube violations。这种形式叫做Support Vector Regression(SVR) primal。

这里写图片描述

SVR的标准QP形式包含几个重要的参数:C和ϵ个参数,2N+2N个条件。

这里写图片描述

Support Vector Regression Dual

现在我们已经得到了SVR的primal形式,接下来将推导SVR的Dual形式。首先,与SVM对偶形式一样,先令拉格朗日因子α对应的拉格朗日因子。

这里写图片描述

然后,与SVM一样做同样的推导和化简,拉格朗日函数对相关参数偏微分为零,得到相应的KKT条件:

这里写图片描述

接下来,通过观察SVM primal与SVM dual的参数对应关系,直接从SVR primal推导出SVR dual的形式。(具体数学推导,此处忽略!)

这里写图片描述

最后,我们就要来讨论一下SVR的解是否真的是sparse的。前面已经推导了SVR dual形式下推导的解w为:

w=n=1N(αnαn)zn

相应的complementary slackness为:

这里写图片描述

对于分布在tube中心区域内的点,满足|wTzn+byn|<ϵ

所以,对于分布在tube内的点,得到的解βn=0。至此,我们就得到了SVR的sparse解。

Summary of Kernel Models

这部分将对我们介绍过的所有的kernel模型做个概括和总结。我们总共介绍过三种线性模型,分别是PLA/pocket,regularized logistic regression和linear ridge regression。这三种模型都可以使用国立台湾大学的Chih-Jen Lin博士开发的Liblinear库函数来解决。

另外,我们介绍了linear soft-margin SVM,其中的error function是err^svm,转换为QP问题进行求解,这也是我们本节课的主要内容。

这里写图片描述

上图中相应的模型也可以转化为dual形式,引入kernel,整体的框图如下:

这里写图片描述

其中SVM,SVR和probabilistic SVM都可以使用国立台湾大学的Chih-Jen Lin博士开发的LLibsvm库函数来解决。通常来说,这些模型中SVR和probabilistic SVM最为常用。

总结

本节课主要介绍了SVR,我们先通过representer theorem理论,将ridge regression转化为kernel的形式,即kernel ridge regression,并推导了SVR的解。但是得到的解是dense的,大部分为非零值。所以,我们定义新的tube regression,使用SVM的推导方法,来最小化regularized tube errors,转化为对偶形式,得到了sparse的解。最后,我们对介绍过的所有kernel模型做个总结,简单概述了各自的特点。在实际应用中,我们要根据不同的问题进行合适的模型选择。

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习技法》课程

(function () { (function () { ('pre.prettyprint code').each(function () { var lines = (this).text().split(\n).length;var ( t h i s ) . t e x t ( ) . s p l i t ( ′ \n ′ ) . l e n g t h ; v a r numbering = $('
  • ').addClass('pre-numbering').hide(); (this).addClass(hasnumbering).parent().append( ( t h i s ) . a d d C l a s s ( ′ h a s − n u m b e r i n g ′ ) . p a r e n t ( ) . a p p e n d ( numbering); for (i = 1; i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值