四元数和向量相乘,向量间的点乘和叉乘

原创 2015年07月07日 09:29:01

四元数和向量相乘

       Quaternion.Euler(x,y,z) 返回一个绕x轴旋转x度再绕y轴旋转y度再绕z轴旋转z度的Quaternion,因此Quaternion.Euler(0,90,0)返回一个绕y轴旋转90度的旋转操作.

Quaternion作用于Vector3的右乘操作(*)返回一个将向量做旋转操作后的向量.

因此Quaternion.Euler(0,90,0)*Vector3(0.0,0.0,-10)表示将向量Vector3(0.0,0.0,-10)做绕y轴90度旋转后的结果.因该等于Vector3(-10,0,0).

点乘

        两个向量点乘得到一个标量 ,数值等于两个向量长度相乘后再乘以二者夹角的余弦值 。如果两个向量a,b均 为单位 向量 ,那么a.b等于向量b在向量a方向上的投影的长度

点乘后得到的是一个值:

若结果 == o,则 两向量 互垂直 。
若结果 < 0  ,则 两向量夹角大于90°。
若结果 >0  ,则两向量夹角小于 90°。

叉乘

      两个向量的叉乘得到一个新的向量 ,新向量垂直于原来的两个向量再乘夹角的正弦值 叉乘后得到的还是一个向量

结论

       在unity3D里面。两个向量的点乘所得到的是两个向量的余弦值,也就是-1 到1之间,0表示垂直,-1表示相反,1表示相同方向。两个向量的叉乘所得到的是两个向量所组成的面的垂直向量,分两个方向。 简单的说,点乘判断角度,叉乘判断方向。 形象的说当一个敌人在你身后的时候,叉乘可以判断你是往左转还是往右转更好的转向敌人,点乘得到你当前的面朝向的方向和你到敌人的方向的所成的角度大小


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Unity 四元数和向量相乘

position = rotation*Vector3(0.0, 0.0, -distance) + target.position;   这是相机环绕的一段代,当时无法理解这是怎么实现环绕的,上...

【Unity技巧】四元数(Quaternion)和旋转

旋转,应该是三种坐标变换——缩放、旋转和平移,中最复杂的一种了。大家应该都听过,有一种旋转的表示方法叫四元数。按照我们的习惯,我们更加熟悉的是另外两种旋转的表示方法——矩阵旋转和欧拉旋转。矩阵旋转使用...

Ogre 引擎四元数与三维向量相乘算法推导

在Ogre引擎中数学模块里的四元数类中有一个四元数与三维向量相乘的函数。函数如下所示:  Vector3 Quaternion::operator* (const Vector3& v) const...

四元数旋转向量

转自:http://www.oschina.net/code/snippet_876234_20178 001 //公式都是网上搜罗的,下面这些经过简单的测试,确认可用。 ...

四元数的运算

转自:http://blog.sina.com.cn/s/blog_4b700c4c0102e30g.html 四元数是由爱尔兰数学家威廉·卢云·哈密顿在1843年发现的数学概念。四元数的乘法不符合...

彻底搞懂四元数

提要旋转的表达方式有很多种,有欧拉角,旋转矩阵,轴角,四元素等等,今天要学习的就是游戏开发中最常用的四元素。从欧拉角和轴向角到四元数在讲四元素之前,我们先来看下简单的欧拉角和轴向角。欧拉角使用最简单的...

(四元素)Quaterninos

欧拉描述法。它使用最简单的x,y,z值来分别表示在x,y,z轴上的旋转角度,其取值为0-360(或者0-2pi),一般使用roll,pitch,yaw来表示这些分量的旋转值。需要注意的是,这里的旋转是...

四元数简介----四元数定义与几何意义

四元数定义 先介绍代数的概念,域F上的一个矢量空间V叫做域F上的代数;如果除数乘、加法外还定义叉乘,如果V是F上的有限维空间,称V为F上的有限维代数;如果 乘法满足结合律,称V为结合代数;实数是...

四元数讲解

转载:http://www.qiujiawei.com/understanding-quaternions/Understanding Quaternions 中文翻译《理解四元数》Tags: mat...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)