Chernoff-Hoeffding Bound

本文是《Concentration of Measure for the Analysis of Randomized Algorithms》的读书笔记,主要讨论Chernoff-Hoeffding界限。Chernoff界限利用矩生成函数处理随机变量之和的期望,适用于独立同分布的伯努利随机变量。Chernoff-Hoeffding界限进一步推广到[0,1]区间内的独立随机变量,通过函数e^λx的凸性特性得到。此外,还介绍了引入方差信息的界限,通过构造上界引入二阶矩。" 119822514,10720807,华为云GaussDB如何防止Redis高危漏洞,"['数据库', '安全', '云服务', 'Redis', 'GaussDB']
摘要由CSDN通过智能技术生成

《Concentration of Measure for the Analysis of Randomized Algorithms》:读书笔记(1)

Chapter 1: Chernoff-Hoeffding Bound

原文发布于https://zybuluo.com/qqiseeu/note/109942


引文

中心不等式(Concentration Inequality)是分析随机算法的经典工具,在机器学习算法的理论分析中也用的特别多。为了
学习这方面的知识,刚开始我选择的是Massart和Lugosi所著的Concentration Inequalities,无奈数学水平不够,看了一章就实在看不下去了。后来换了这本简单一些的Concentration of Measure for the Analysis of Randomized Algorithms,总算是能往后翻了。这个系列的文章作为读书笔记,希望能够督促自己坚持读完。

Concentration of meature可简单地理解为随机变量在其期望处“聚集”的行为。概率论中已经提供了两个经典工具————大数定律及中心极限定理————来刻画这种现象,然而它们所给出的结果存在几点不足:

  • 上述结果只刻画了渐进情况下的性质,然而在分析实际算法时我们更青睐能够应用于finite case的结果
  • 上述经典工具给出的是qualitative的结果,但我们更希望有quantitative的结果,也即明确的收敛率
  • 上述经典工具给出的结果都基于独立性的假设,然而对于很多复杂的随机算法,独立性是不满足的,因此我们需要不依赖独立性假设的工具。

Chernoff Bound

Chernoff bounding technique指的是用moment-generating function来处理多个随机变量之和的期望的技巧。所谓moment-generating function被定义为随机变量 X 的指数函数的期望 E[eλX]

先来看一个简单的例子:考虑独立同分布的Bernoulli随机变量 XiBernoulli(p) 及它们的和 X=i[n]Xi ,易见 XBinomial(n,p) 。现在要估计 X 偏离其期望一定距离的概率,即 Pr[X>n(p+t)] 。先考虑一个一般性的情况:估计 Pr[X>m] 。由Markov不等式易得

Pr[X>m]=Pr[eλX>eλm]E[eλX]eλm

根据 Xi 的独立性,上述式子中的moment-generating function可写成

E[eλX]=E[eλiXi]=E[ieλXi]=iE[eλXi]=(peλ+q)n

其中 q=1p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值