Azuma不等式和Hoeffding不等式

本文介绍了随机过程中的两个重要不等式——Azuma不等式和Hoeffding不等式。首先,通过一个引理证明了Azuma不等式,该不等式给出了在特定条件下的概率上界。接着,通过Azuma不等式推导出Hoeffding不等式,该不等式用于估计独立随机变量和的偏差概率。整个证明过程涉及到了鞅的性质、凸函数和泰勒展开等概念。
摘要由CSDN通过智能技术生成

Hoeffding不等式证明见Hoeffding不等式证
鞅的定义
一个随机过程 { Z n , n ≥ 1 } \{Z_n,n\ge 1\} { Zn,n1},若对一切 n n n
E [ ∣ Z n ∣ ] < ∞ \mathbb{E}[|Z_n|] \lt \infty E[Zn]<

E [ Z n + 1 ∣ Z 1 , ⋯   , Z n ] = Z n \mathbb{E}[Z_{n+1} |Z_1,\cdots,Z_n] = Z_n E[Zn+1Z1,,Zn]=Zn
鞅是公平博弈的广义版本。若我们将 Z n Z_n Zn解释为一个赌徒经过 n n n轮公平博弈后得到的财产为 Z n Z_n Zn,则下一次赌博得到的财产 Z n + 1 Z_{n+1} Zn+1期望等于 Z n Z_n Zn而不管前面发生了什么

例子: X i X_i Xi是均值为0的独立同分布变量, S n = ∑ i = 1 n X i S_{n}=\sum_{i=1}^n X_i Sn=i=1nXi为一个鞅
在介绍Azuma不等式前,先介绍一个引理

引理1:随机变量 X X X E [ X ] = 0 \mathbb{E}[X]=0 E[X]=0 P { − α ≤ X ≤ β } = 1 P\{-\alpha \le X \le \beta\} = 1 P{ αXβ}=1则对任意凸函数有
E [ f ( X ) ] ≤ β α + β f ( − α ) + α α + β f ( β ) \mathbb{E}[f(X)] \le \frac{\beta}{\alpha + \beta}f(-\alpha) + \frac{\alpha}{\alpha + \beta}f(\beta) E[f(X)]α+ββf(α)+α+βαf(β)
证明:由凸函数的定义, ∀ γ ∈ [ 0 , 1 ] \forall \gamma\in [0,1] γ[0,1], x , y x,y x,y为定义域中的点,有
f ( γ x + ( 1 − γ ) y ) ≤ γ f ( x ) + ( 1 − γ ) f ( y ) f(\gamma x + (1-\gamma)y) \le \gamma f(x) + (1-\gamma) f(y) f(γx+(1γ)y)γf(x)+(1γ)f(y)
即可得到

引理2 0 ≤ θ ≤ 1 0\le \theta \le 1 0θ1
θ e ( 1 − θ ) x + ( 1 − θ ) e − θ x ≤ e x 2 / 8 \theta e^{(1-\theta)x} +(1-\theta)e^{-\theta x} \le e^{x^2/8} θe(1θ)x+(1θ)eθxex2/8
证明:令 θ = ( 1 + α ) / 2 , x = 2 β \theta = (1+\alpha) / 2,x=2\beta θ=(1+α)/2,x=2β,则相当于证明对 − 1 ≤ α ≤ 1 -1\le \alpha\le1 1α1
( 1 + α ) e β ( 1 − α ) + ( 1 − α ) e − β ( 1 + α ) ≤ 2 e β 2 / 2 (1+\alpha) e^{\beta (1-\alpha)} + (1-\alpha) e^{-\beta(1+\alpha)} \le 2 e^{\beta^2/2} (1+α)eβ(1α)+(1α)eβ(1+α)2eβ2/2
等价于
e β + e − β + α ( e β − e − β ) ≤ 2 exp ⁡ { α β + β 2 / 2 } e^\beta + e^{-\beta} + \alpha(e^\beta - e^{-\beta}) \le 2 \exp\{\alpha\beta + \beta^2 /2\} eβ+eβ+α(eβeβ)2exp{ αβ+β2/2}
α = ± 1 \alpha=\pm 1 α=±1或者 β \beta β足够大,比如 β ≥ 100 \beta \ge100 β100时,不等式显然成立
所以如果不等式不成立,则函数
f ( α , β ) = e β + e − β + α ( e β − e − β ) − 2 exp ⁡ { α β + β 2 / 2 } f(\alpha,\beta)=e^\beta +e^{-\beta} +\alpha(e^\beta - e^{-\beta}) -2\exp\{ \alpha \beta + \beta^2 /2\} f(α,β)=eβ+eβ+α(eβ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值