PCA方法的应用场景

52 篇文章 2 订阅

PCA(Principal Component Analysis , PCA )是主成分分析方法,是一种较为粗糙的降维方法,对于小样本量的数据来说,它不如因子分析方法实用。但是当数据量较大时,主成分分析方法就有了用武之地了。PCA方法常用于人脸识别。
  当样本数据成千上万时,维数上千时,PCA是非常有效的一种降维方法,它能起到的作用有两个:一个是节约存储空间,当数据量过多时,通过减少几个维度就可以节约很多空间;另一个是提供计算的速度,将数据降维后,无论是样本数据训练时,还有对新数据做出响应时,速度都会大幅提高。
  要使PCA发挥最大的作用,训练用的原始数据就必须足够多,数据的收集是制约主成分分析发展的障碍之一。比如,人脸识别系统中的原始照片至少要上千,主成分分析的结果才具有意义。而当人的面部表情不同时、有障碍物遮挡面部时、光线过强或过弱时都会影响照片的质量,难以从中提取有效的原始特征数据,也就难以得到好的低维空间。
  除去收集数据需要花费大量精力和资源以外,在主成分分析时,同样需要注意数据的归一化问题。由于变量和变量之间的单位或者量纲不同,比如,人的牙齿长度按毫米计算,眼睛长度却按厘米计算,不同的量纲将导致计算特征值时变量所占比重不同。在进行主成分分析时,需要将所有的变量统一量纲,计算完毕后在还原至原始的量纲,否则计算结果将受到影响。
  为了弥补主成分分析的不足之处,人们尝试了多种方法。比如,在人脸识别系统中,我们考虑收集3D人脸模型而不是2D照片,把3D人脸模型作为训练识别系统的原始数据。这样做可以克服表情、光线、遮挡为对照片识别的阻碍,提取出更多的原始特征数据,从而提高人脸识别系统的精确度。
  在常用的数据分析软件里,有主成分分析模块,比如SPSS软件。也可以用MatLab来进行PCA分析。在Matlab里,通过计算协方差矩阵和特征值矩阵、特征向量的函数等,来实现PCA分析。

  • 6
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
如果您下载了本程序,但是该程序存在问题无法运行,那么您可以选择退款或者寻求我们的帮助(如果找我们帮助的话,是需要追加额外费用的)。另外,您不会使用资源的话(这种情况不支持退款),也可以找我们帮助(需要追加额外费用) MATLAB(Matrix Laboratory)是一款由美国MathWorks公司开发的高性能商业数学软件,它集成了高级技术计算语言、交互式环境以及丰富的工具箱,被广泛应用于工程计算、数据分析、算法开发和科学可视化等领域。MATLAB的核心功能包括: 1. **数值计算**:支持大规模矩阵和数组运算,对线性代数、微积分、概率统计等数学问题提供高效解决方案。 2. **编程环境**:提供了易于使用的脚本编写与函数定义界面,支持面向对象编程,并可通过M文件实现模块化程序设计。 3. **数据可视化**:内置强大的二维和三维图形绘制功能,能够创建高质量的数据图表,便于数据分析和结果展示。 4. **工具箱扩展**:MathWorks为MATLAB提供了众多领域的专业工具箱,如信号处理、图像处理、通信系统、控制系统、机器学习、深度学习、量化金融、优化算法等,极大地扩展了MATLAB的应用范围。 5. **Simulink仿真**:作为MATLAB的重要组成部分,Simulink是一个动态系统建模、仿真和基于模型的设计环境,特别适用于多域物理系统和嵌入式系统的模拟和实时测试。 6. **集成能力**:MATLAB可以与其他编程语言(如C、C++、Java、Python等)及外部应用程序进行数据交换和联合开发,也可以调用硬件接口进行实时实验和控制。 7. **交互式工作空间**:用户可以在命令窗口中直接输入表达式并立即得到结果,这种交互式的特性使得快速原型设计和调试变得极为便利。 总之,MATLAB是科学家、工程师和技术人员进行科研、教育和工业应用不可或缺的强大工具之一,尤其在需要大量数值计算和复杂系统建模的场景下发挥着重要作用。
### 回答1: 数据降维通常被认为是数据挖掘和机器学习中的重要工具。它的目的是在不丢失太多信息的情况下减少数据的维数以便于处理。PCA和t-SNE是两种常见的降维技术。下面我们来看看它们之间的区别: PCA(Principal Component Analysis,主成分分析)是一种线性降维方法。它通过线性变换将高维数据映射到低维空间,保留尽可能多的原始数据的信息。在PCA中,数据由它的主成分分析的线性组合表示。主成分分析能有效地捕捉到数据的方差结构,但是它可能会忽略重要的非线性结构。PCA不适合用于非线性数据集的降维。 t-SNE(t-Distributed Stochastic Neighbor Embedding,t分布随机邻居嵌入)是一种非线性降维方法。它能够有效地处理高维空间中的非线性关系,并可将这些关系表现在低维空间中。t-SNE能够用来发现数据的嵌入模式,它考虑到每个领域中的所有点,而不仅仅是最近邻点。但是t-SNE计算复杂度较高,需要大量的计算时间和内存资源。 综上所述,PCA和t-SNE是两种不同的降维方法PCA是一种线性降维方法,适合于线性数据集。t-SNE是一种非线性降维方法,适合于非线性数据集。在选择降维方法时,应该根据数据的结构和降维目的来选择。 ### 回答2: tsne和pca都是常用的降维方法,它们的目的都是将高维数据映射到一个低维空间,以便于可视化和数据分析。 首先,tsne和pca降维方式不同。pca基于数据的协方差矩阵,通过对其进行特征值分解来得到主成分,也就是数据投影后的新坐标轴。而tsne基于高维数据的相似性度量,通过在低维空间中最小化样本间的KL距离,来将高维数据映射为低维表示。 其次,tsne和pca降维效果也有所不同。pca主要关注保持原有数据的方差,将方差大的特征投影到主成分上,保留最显著的信息。相较而言,tsne基于局部相似度的聚类,更适用于寻找数据中的团簇结构(类似于k-means 算法),得到的降维结果更具有可解释性、更适用于数据分类、聚类等数据挖掘任务。 再次,tsne的计算比pca更慢。由于tsne相比于pca多了一个KL散度的计算,同时将高维空间中的相似性转化为低维空间中的概率分布,因此tsne算法计算的复杂度和时间更高。不过,tsne得到的结果比pca更具有可解释性,同时也能更好地反映数据中的局部结构。 总之,tsne和pca都是常用的降维方法,并且在不同的应用场景中有不同的表现和优劣。在实际应用中,需要根据具体问题的需求来选择适合的降维方法。 ### 回答3: PCA(Principal Component Analysis)和t-SNE(t-Distributed Stochastic Neighbor Embedding)是常见的降维方法。它们都是将高维数据转换为低维表示,以便于数据处理和可视化。下面来介绍一下它们的主要区别。 首先,PCA是一种线性降维方法,它的主要思想是找到使得数据方差最大的方向,然后将数据投影到这个方向上得到一个新的一维(或多维)空间,如下图所示: ![PCA Demo](https://i.imgur.com/LvOinjD.png) 在这个新的一维空间中,数据之间的距离可以被保留,但是数据的原始特征会被丢失。而t-SNE则是一种非线性降维方法,它的主要思想是将高维数据映射到低维空间中,同时保持数据之间局部距离的相对关系,全局距离的相对关系则可以被忽略。如下图所示: ![t-SNE Demo](https://i.imgur.com/4QoovV9.png) 可以看到,在低维空间中,数据点之间的距离关系可能会被扭曲,但是相对的局部距离关系被保留。 其次,PCA和t-SNE的应用场景也有所不同。PCA适用于线性数据降维,尤其是在大量样本数据中找到主成分进行压缩;而t-SNE主要适用于高维数据聚类分析、可视化、异常值检测等,尤其是当数据之间的相对位置关系比较重要时。 再次,PCA和t-SNE在计算速度上也有一定区别。PCA可以使用特征值分解等一些快速算法进行计算,速度相对较快;而t-SNE的计算速度较慢,尤其在大规模数据处理时需要较长时间。 总之,PCA和t-SNE在降维的基本思路、适用场景和计算速度等方面存在差异。在具体应用时需要根据数据类型和处理目的选择合适的降维方法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值