重心座标插值(Barycentric Interpolation)

本文深入探讨了重心坐标插值在图形学领域的应用,包括RayTracing算法、有限元模拟和几何形状操作。从一维线段到二维三角形再到三维四面体,详细介绍了如何通过面积和向量计算来实现点的插值。同时提供了求解三角形和四面体面积的方法,并解释了如何利用重心坐标判断点与几何体的位置关系。

提要

       重心座标插值在图形学领域有着很重要的应用,比如Ray Tracing算法的ray - triangle intersection 检测,比如有限元模拟中的模型简化等。


一维情况

      从最简单的开始,一个线段:


如何表示p点的值?

可以这样想,p总是在x1和x2之间徘徊,不知道如何选择,蓝色线段的长度t表示p对x2的喜爱程度,红色线段(1-t)表示对x1的喜爱程度。

那么P点的值就可以表示为

   .


二维情况

二维情况下就是三角形了。



求点p的值。

二维情况下就应该联想到面积。想法类似,如下图:


蓝色三角形面积A3表示p喜爱蓝色点的程度,绿色三角形和红色三角形同理。


那么p点的座标就可以表示为:


令 u = A1/A ,v = A2/A, w = A3/A

则式子可以化为 

ux1 + vx2 + wx3.

其中 u+v+w=1.


求三角形面积

已知三角形三个顶点的座标值,求三角形面积。如下图


首先求平行四边形的面试,用到的是向量的点乘。

Parallelogramarea= ||(BA)×(CA)||Trianglearea=Parallelogramarea2Parallelogramarea= ||(BA)×(CA)||Trianglearea=Parallelogramarea2Parallelogramarea= ||(BA)×(CA)||Trianglearea=Parallelogramarea2Parallelogramarea= ||(BA)×(CA)||Trianglearea=Parallelogramarea2Parallelogramarea= ||(BA)×(CA)||


三角形面积除以2就可以了。

Trianglearea=||(BA)||||(CA)||sin(θ)2


三维情况

三维1情况对应的就是四面体( Tetrahedron)了。如下图,还是求P点的值。


也许大家第一想到的是体积是这样的,计算每个小四面体的体积,然后和最大的四面体体积相比,得到对应的比例,原理是这样的,但是有更加简单的方法!

首先定义点到平面的有向距离为:D(p , PLabc),其中p、a、b、c均为空间上的点,而PL是由a、b、c三个点所构成的平面,那么对于上图分布的一个四面体以及另外的任意一个点P,可得该点的重心坐标为:

其中的分别是P点相对于a,b,c,d点的权重,而且有+++= 1

p = a *   + b *  +c *  +d *  =a +(b-a)  + (c-a)  + (d-a)

有了重心坐标之后就可以使用其来判断P点与该四面体间的关系:

  • 如果均属于[0,1],那么P点位于该四面体的内部。
  • 如果其中某一项不在此范围内,还可以根据其越域方式来判断P点在四面体外的分布情况:比如小于0,那么P点就处于bcd所对应的平面之下(此处用a点来参考平面的上下);反之,若其大小1,那么P点就处于过P点且平行于bcd平面的平面之上。


参考

Barycentric Coordinates - http://www.scratchapixel.com/lessons/3d-basic-lessons/lesson-9-ray-triangle-intersection/barycentric-coordinates/

Barycentric Coordinates of Tetrahedron  - http://blog.csdn.net/bugrunner/article/details/7423727






### 重心拉格朗日插值配点法实现 重心拉格朗日插值是一种改进的拉格朗日插值方法,能够有效减少计算量并提高稳定性。这种方法特别适合于数值分析中的多项式插值问题[^1]。 #### Python 实现代码示例 下面是一个简单的Python程序,实现了重心拉格朗日插值: ```python import numpy as np def barycentric_lagrange_interpolation(x_data, y_data, x_eval): """ 使用重心拉格朗日插值法进行插值 参数: x_data : array-like 已知数据点的横坐标 y_data : array-like 已知数据点的纵坐标 x_eval : float or array-like 需要评估的新位置 返回: 插值得到的结果 """ n = len(x_data) # 初始化权重向量 w[i]=(-1)^i * product(j != i)(xi-xj) weights = np.ones(n) for i in range(n): for j in range(n): if i != j: weights[i] /= (x_data[i] - x_data[j]) # 如果输入的是单个数,则转换成数组处理 single_value_input = not isinstance(x_eval, (list, tuple, np.ndarray)) if single_value_input: x_eval = [x_eval] result = [] for xe in x_eval: numerator_sum = 0.0 denominator_sum = 0.0 for k in range(n): if abs(xe - x_data[k]) < 1e-10: # 当xe接近某个节点时直接返回对应yi result.append(y_data[k]) break weight_k = weights[k] term = weight_k / (xe - x_data[k]) numerator_sum += term * y_data[k] denominator_sum += term else: interpolated_y = numerator_sum / denominator_sum result.append(interpolated_y) return result[0] if single_value_input else np.array(result) # 测试例子 if __name__ == "__main__": import matplotlib.pyplot as plt # 定义一些测试数据点 test_x = [-9, -4, -1, 7] test_y = [5, 2, -2, 9] # 创建更多点来进行绘图展示效果 plot_x = np.linspace(min(test_x)-1, max(test_x)+1, 400) plot_y = barycentric_lagrange_interpolation(test_x, test_y, plot_x) fig, ax = plt.subplots() ax.plot(plot_x, plot_y, label='Interpolating Polynomial') ax.scatter(test_x, test_y, color="red", zorder=5, label='Data Points') ax.set_xlabel('X Axis') ax.set_ylabel('Y Axis') ax.legend() plt.show() ``` 这段代码定义了一个`barycentric_lagrange_interpolation()`函数来执行重心拉格朗日插值操作,并提供了一组测试用的数据点及其可视化结果。此代码片段不仅展示了如何应用该算法解决问题,还提供了直观的理解方式[^3]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值