triplet loss 原理以及梯度推导

原创 2015年07月07日 13:01:52

【前言】
最近,learning to rank 的思想逐渐被应用到很多领域,比如google用来做人脸识别(faceNet),微软Jingdong Wang 用来做 person-reid 等等。learning to rank中其中重要的一个步骤就是找到一个好的similarity function,而triplet loss是用的非常广泛的一种。

【理解triplet】

这里写图片描述

如上图所示,triplet是一个三元组,这个三元组是这样构成的:从训练数据集中随机选一个样本,该样本称为Anchor,然后再随机选取一个和Anchor (记为x_a)属于同一类的样本和不同类的样本,这两个样本对应的称为Positive (记为x_p)和Negative (记为x_n),由此构成一个(Anchor,Positive,Negative)三元组。

【理解triplet loss】
有了上面的triplet的概念, triplet loss就好理解了。针对三元组中的每个元素(样本),训练一个参数共享或者不共享的网络,得到三个元素的特征表达,分别记为:这里写图片描述 。triplet loss的目的就是通过学习,让x_a和x_p特征表达之间的距离尽可能小,而x_a和x_n的特征表达之间的距离尽可能大,并且要让x_a与x_n之间的距离和x_a与x_p之间的距离之间有一个最小的间隔这里写图片描述。公式化的表示就是:
这里写图片描述

对应的目标函数也就很清楚了:
这里写图片描述
这里距离用欧式距离度量,+表示[]内的值大于零的时候,取该值为损失,小于零的时候,损失为零。
由目标函数可以看出:

  • 当x_a与x_n之间的距离 < x_a与x_p之间的距离加这里写图片描述时,[]内的值大于零,就会产生损失。
  • 当x_a与x_n之间的距离 >= x_a与x_p之间的距离加这里写图片描述时,损失为零。

【triplet loss 梯度推导】
上述目标函数记为L。则当第i个triplet损失大于零的时候,仅就上述公式而言,有:
这里写图片描述

【算法实现时候的提示】
可以看到,对x_p和x_n特征表达的梯度刚好利用了求损失时候的中间结果,给的启示就是,如果在CNN中实现 triplet loss layer, 如果能够在前向传播中存储着两个中间结果,反向传播的时候就能避免重复计算。这仅仅是算法实现时候的一个Trick。

下一节给出caffe中实现triplet loss的方法和代码。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

基于Triplet loss 函数训练人脸识别深度网络

基于Triplet loss 函数训练人脸识别深度网络 在FaceNet中,作者提出了基于度量学习的误差函数Triplet loss,其思想来源如下: ∥∥xai−xpi∥∥22+thresh...
  • kklots
  • kklots
  • 2015年10月08日 11:53
  • 10225

深度学习triplet loss 做人再识别(person-reid)

最近需要做这个课题,采用深度学习做,废话不多说,直接说一下我的思路以及遇到的问题,希望能有人交流一下(哭,效果一直不好,找不到原因)。主要是参照cvpr的这篇论文Person Re-Identific...
  • gu_gu_
  • gu_gu_
  • 2017年02月21日 14:33
  • 3870

Re-ID with Triplet Loss

一篇讲Person Re-ID的论文,与人脸识别(认证)有很多相通的地方。 《In Defense of the Triplet Loss for Person Re-Identification》...
  • shuzfan
  • shuzfan
  • 2017年04月11日 17:48
  • 3430

Beyond triplet loss—— Re-ID

一篇讲Person Re-ID的论文,来自CVPR2017,同样是改进了Triplet Loss。《Beyond triplet loss: a deep quadruplet network for...
  • shuzfan
  • shuzfan
  • 2017年04月15日 21:55
  • 2176

triplet loss 原理以及梯度推导

【前言】 最近,learning to rank 的思想逐渐被应用到很多领域,比如google用来做人脸识别(faceNet),微软Jingdong Wang 用来做 person-reid 等等...

Triplet Loss及其梯度

Triplet Loss及其梯度  Triplet Loss简介 我这里将Triplet Loss翻译为三元组损失,其中的三元也就是如下图的Anchor、Negative、Positive,如下图...

如何在caffe中增加layer以及caffe中triplet loss layer的实现

【如何在caffe中增加新的layer】【caffe中一步步实现triple loss layer】【新增加layer的编译和测试】...

tripletLoss,训练,网络配置

网络定义中的使用类似softmaxlosslayer,最后两层对应修改举例如下: #======================softmax==================== # layer ...

Torch 中添加自己的 nn Modules:以添加 Dropout、 Triplet Loss 为例

因为要复现前面阅读的一篇论文:《论文笔记:Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles》 ...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:triplet loss 原理以及梯度推导
举报原因:
原因补充:

(最多只允许输入30个字)