【线性代数】矩阵的四个基本子空间

矩阵的四个基本子空间


1、零空间

        矩阵A的零空间就Ax=0的解的集合。假设矩阵的秩为r,矩阵为m*n的矩阵,则零空间的维数为n-r。因为秩为r,则自由变量的个数为n-r,有几个自由变量,零空间就可以表示层几个特解的线性组合,也即是零空间的维数为自由变量的个数。

2、列空间

       矩阵A的列空间就是矩阵A中各列的线性组合。假设矩阵的秩为r,矩阵为m*n的矩阵,则列空间可以表示为r个主元的线性组合,即零空间的维数为r。

3、行空间

        在线性代数中,我们一般习惯将矩阵看出是一组列向量的组合,matlab中矩阵的存储是按列存储的(c中不是)。因此,我们可以将矩阵A进行转置后来讨论行空间和左零空间。假设转置后的矩阵为AT,则A的行空间就是AT的列空间,A的左零空间为AT的零空间。注意这里AT为n*m的矩阵。则此时行空间的维数为r。

4、左零空间

       左零空间是ATx=0的解的集合。由于秩为r,则自由变量的个数为m-r,即左零空间的维数为m-r。


上面都是一些定理结果,下面来举例说明上述定理:

假设矩阵为A:


经过高斯消元得到行最简式R:


于是我们知道矩阵A的秩为2,则其列空间,行空间的维数都是2,零空间的维数为4-2=2,左零空间的维数为3-2=1。
很明显,矩阵A的列中,前两列是线性无关的,则其列空间可以由前两列来表示。同理,前两行是线性无关的,其行空间可以有前两行来表示。由于只有两个主元,则自由变量个数为4-2=2,所以零空间的特解有两个,零空间可以由这两个特解的线性组合来表示。由于左零空间可以看成是ATx=0的线性组合,则有:

我们知道初等行变换不改变矩阵的行空间,但可能改变其列空间(因为行变换是行向量的线性组合),并且消元过程可以表示如下:


我们可以看出,初等矩阵E的第三行与A相乘得到的是0向量即:


对比下式:


可以求得x的值:


这个x就是左零空间的基,因此左零空间的维数为3-2=1。


原文:http://blog.csdn.net/tengweitw/article/details/40950001

作者:nineheadedbird


  • 6
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值