漫步微积分二十六——Sigma符号和一些特殊和

为了理清定积分,我们首先介绍一个标准的数学符号,它用于缩写长的求和公式。这就所谓sigma符号,用希腊字母 Σ 表示。在希腊字母表中,字母 Σ 对应于英语字母的 S ,也就是sum的第一个字母。这可以帮助我们记住这个符号,提示我们是和或加运算。

如果给定一些数a1,a2,,an,他们的和表示为

k=1nak(1)

其中 k 的变化范围是1到n(即 a1,a2,,an ),所有这些数相加得到:

k=1nak=a1+a2++an

在(1)中 σ 下面是 k=1 ,上面是 n ,也就说求和项ak k=1 开始终止于 k=n 。下标 k 叫做和的索引,也可以用任何其他字母(如i,j)。

k=15k3,i=15i3,andj=15j5

他们都表示同一个和,即 13+23+33+43+53=225

这里再给一些其他的例子:

k=13kk2+1k=14(1)k+11k2k=1nkk=1n2kk=1n(2k1)=112+1+222+1+332+1=112122+132142=1+2++n=2+4++2n=1+3++(2n1)

注意第二个求和公式中的因子 (1)k+1 用于产生交替的正负符号 +,,+, 。后三个分别是所有正整数之和,偶数之和,奇数之和。

还有一些来自基本代数的公式:

k=1nkk=1nk2k=1nk3=1+2++n=n(n+1)2=12+22++n2=n(n+1)(2n+1)6=13+23++n3=[n(n+1)2]2(2)(3)(4)

这些公式可以用数学归纳法来证明。然而,得到(2)更简单的方法是按自然顺序写出求和公式,再按相反的顺序写出来:

ss=1+2++n=n+(n1)++1

将等式相加得 2s=n(n+1) ,从而立马得到(2)。

还有一种方法可以来证明(2),这需要知道一个事实,即 (k+1)2=k2+2k=1 ,等价地

(k+1)2k2=2k+1(5)

如果我们让 k 1,2,3,,n,就得到

221232224232(n+1)2n2=21+1=22+1=23+1=2n+1

将他们相加并消元得

(n+1)212=2[k=1nk]+n

求出括号里的值即可得到(2):

k=1nk=12[(n+1)212n]=12[n2+n]=n(n+1)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值