CS231n笔记2--Fully Connected Neural Network与Activation Function

本文介绍了深度学习中的三种主要激活函数:Sigmoid、tanh和ReLU。Sigmoid虽然历史久远,但在饱和区存在梯度消失问题;tanh输出以零为中心,但计算复杂度高;ReLU因其高效和快速收敛成为首选,但要注意避免死区。文章还提及了ReLU的改进版如Leaky ReLU和Maxout。
摘要由CSDN通过智能技术生成

Fully Connected Neural Network与Activation Function

神经网络–Fully Connect Neural Network

一个最简单的神经网络

一个最简单的神经网络

hw,b=f(x1w1+x2w2+x3w3+b)=f(XW+b)

向量化的python代码

def f(z):
    return ReLu(z)

h = f(X.dot(W)+b)

这里 f 是激活函数(Activation Function),我们稍后会讲,这里我们先用ReLu作为激活函数。

让网络更复杂些

一个三层的神经网络
这是一个三层的神经网络,第一层称为输入层,最后一层称为输出层,其他层(这里只剩第二层)则为隐藏层,别看好像突然复杂了很多,但是事实并非如此
定义 Wli,j 为第 l 层的第i个元素的值到第 l+1 层第j个元素的值的权重,因此

全连接神经网络(fully connected neural network)是一种传统的神经网络结构,也被称为多层感知机(Multi-Layer Perceptron,MLP)。 全连接神经网络的主要特点是每个神经元与上一层的所有神经元都有连接。也就是说,上一层的所有神经元都向下一层的每个神经元传递信息。这种连接方式使得神经网络能够对输入的特征进行全面的学习和表示。 在全连接神经网络中,每一层都包括多个神经元,每个神经元都有一个激活函数来处理输入值。每个神经元将加权和的结果传递给激活函数,经过激活函数的处理后,得到该神经元的输出结果。 全连接神经网络通过多个全连接的隐藏层,逐层地对输入数据进行特征转换和抽象,最终得到输出结果。在训练过程中,通过反向传播算法来优化网络的权重和偏差,使得网络能够更准确地进行预测和分类。 虽然全连接神经网络具有较好的表示能力和拟合能力,但也存在一些问题。例如,全连接神经网络的参数量较大,容易产生过拟合;并且由于每个神经元都需要与上一层的所有神经元建立连接,会导致计算量较大,不适合处理大规模的输入数据。 总的来说,全连接神经网络是一种较为简单和直观的神经网络结构,常用于解决分类和回归等问题。随着神经网络的发展,一些新的网络结构如卷积神经网络和循环神经网络逐渐取代了全连接神经网络在某些任务上的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值