算法的时间复杂度和空间复杂度

转载 2015年07月08日 00:43:29

时间复杂度

时间复杂度简单的理解就是执行语句的条数。如果有循环和递归,则忽略简单语句,直接算循环和递归的语句执行次数。

比如:

[java] view plaincopy
  1. int x = 1;//时间复杂度为O(1)  
  2. for(int i=0; i<n; i++) {  
  3.     System.out.println(i);  
  4. }//时间复杂度为O(n)  
具体例子:

1、O(1)

[java] view plaincopy
  1. int x = 1;  

2、O(n)

[java] view plaincopy
  1. for(int i=0; i<n; i++) {  
  2.     System.out.println(i);  
  3. }  

3、O()

[html] view plaincopy
  1. int n = 8count = 0;;  
  2. for(int i=1; i<=n; i *= 2) {  
  3.     count++;  
  4. }  

4、

[html] view plaincopy
  1. int n = 8count = 0;;  
  2. for(int i=1; i<=n; i++) {  
  3.     for(int j=1; j<=n; j++) {  
  4.         count++;  
  5.     }  
  6. }  

5、

[java] view plaincopy
  1. int n = 8, count = 0;;  
  2. for(int i=1; i<=n; i *= 2) {  
  3.     for(int j=1; j<=n; j++) {  
  4.         count++;  
  5.     }  
  6. }  

所举例子都比较简单。

空间复杂度

空间复杂度也很简单的理解为临时变量占用的存储空间。一个简单例子:

[java] view plaincopy
  1. //交换两个变量x和y  
  2. int x=1, y=2;  
  3. int temp = x;  
  4. x = y;  
  5. y = temp;  

一个临时变量temp,所以空间复杂度为O(1)。

//////////////////////////////////////////////////////////////////////////////////////////////

要在 hash 表中找到一个元素就是 O(1)
要在无序数组中找到一个元素就是 O(n)

访问数组的第 n 个元素是 O(1)
访问链表的第 n 个元素是 O(n)

我给你一个简单的判断方法:
如果实现中没有循环就是 O(1)
如果实现中有一个循环就是 O(n)

//////////////////////////////////////////////////////////////////////////////////

举个简单的例子,要从0加到n,我们会这么写:
int sum = 0;
for(int i = 0; i<=n; ++i)
{
   sum += i;
}
一共算了n次加法,那么就说这个时间复杂度是O(n)。当然O(n)的精确的概念是,是n的最高次方,比如,某个计算共计算了3n + 2次,那么这个时间复杂度也是O(n),因为3n + 2中的最高次方是n。

如果代码这么写:
int sum = 0;
for(int i = 0; i<=n; ++i)
{
   for(int j = 0; j <=n; ++j)
   {
      sum += (i + j);
   }
}

很显然一共算了n^2次加法,那么就说这个时间复杂度是O(n^2),和上面类似,如果某个算法计算了3*n^2 + n + 1次,其时间复杂度仍然是O(n^2),因为3*n^2 + n + 1中最高的次方是n^2

所谓O(1)就是计算的次数是个常量,我们还以上面从0加到n的例子来说,如果我们用等差数列的公式,那么,代码可以这么写:
int sum = n * (n + 1) / 2
不管n有多大(当然不能溢出了),通过上面的公式只需计算一次,也就说计算的次数是不变的,这种情况的时间复杂度就可以说成O(1)。 再比如如果某个计算,不管其他条件怎么变化,均只需计算5次即可得出结果,那么这种情况的时间复杂度,也是O(1)。

///////////////////////////////////////////////////////////////////////////////////////

把输入规模看成x轴,所花时间/空间看成y轴。
O(n)就是 y = x, y随x的增长而线性增长。一条斜线
O(1)就是 y = 1,不管x如何变,y不变。一条与x平行的线

//////////////////////////////////////////////////////////////////////////////////////

以快速排序为例,第i轮中,数据集已被分为2^(i-1)块,在选定这么多个pivot之后,要遍历所有n个元素才能把所有2^(i-1)个块分为2^i块,这个过程一共要做log(n)次,可不就是n*log(n)?

///////////////////////////////////////////////////////////////////////////////////

把n的问题看成一棵二叉树。
log N算法就是从root找到一个叶子结点,复杂度为树高,也就是 log N。
N log N算法则是从root找到每一个叶子结点,复杂度为树高*叶子结点个数,也就是logN * N


一文搞懂算法的时间复杂度与空间复杂度

时间复杂度分析 空间复杂度
  • u010402786
  • u010402786
  • 2016年05月17日 14:52
  • 3110

算法的空间复杂度于时间复杂度的关系

算机在完成一个任务的时候有两个指标,时间和所有内存(也就是空间)。这两者是负相关的。也就是说,当你设计一个特定程序时,你可以选择使用更多的内存,这样可以达到提高程序运行速度的目的,也就是减少程序运行时...
  • sunstars2009918
  • sunstars2009918
  • 2011年09月07日 10:53
  • 5573

算法的时间复杂度和空间复杂度分析

一 算法的时间复杂度分析  (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算...
  • a11211058
  • a11211058
  • 2016年05月10日 17:08
  • 2272

关于计算时间复杂度和空间复杂度

相信学习编程的同学,或多或少都接触到算法的时间复杂度和空间复杂度了,那我来讲讲怎么计算。        常用的算法的时间复杂度和空间复杂度 一,求解算法的时间复杂度,其具体步骤是:   ⑴ 找出算法...
  • yangwei282367751
  • yangwei282367751
  • 2016年09月04日 00:09
  • 15569

数据结构之时间复杂度和空间复杂度

算法复杂度分为时间复杂度和空间复杂度,一个好的算法应该具体执行时间短,所需空间少的特点。      随着计算机硬件和软件的提升,一个算法的执行时间是算不太精确的。只能依据统计方法对算法进行估算。...
  • lg_gyh
  • lg_gyh
  • 2016年09月06日 18:45
  • 2894

算法-时间复杂度和空间复杂度

2.9 算法时间复杂度 2.9.1 算法时间复杂度定义 在进行算法分析时 , 语句总的执行次数 T ( n )是关子问题规模n的函数,进而分析 T ( n )随 n 的变化情况并确定T(n)的数量级...
  • smile_from_2015
  • smile_from_2015
  • 2017年02月23日 21:40
  • 1948

算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度 1、时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法...
  • zolalad
  • zolalad
  • 2013年09月20日 16:01
  • 98201

常用算法时间空间复杂度

Know Thy Complexities! Hi there!  This webpage covers the space and time Big-O complexities of comm...
  • yangcs2009
  • yangcs2009
  • 2014年10月15日 13:36
  • 1519

JAVA数据结构和算法:第一章(时间复杂度和空间复杂度)

数据结构数据结构基础概念不论是哪所大学,数据结构和算法这门课都被贯上无趣、犯困、困难的标签,我们从最基础最通俗的语言去说起,保证通俗易懂。 数据结构到底是什么呢?我们先来谈谈什么叫数据。 数据:数据是...
  • c99463904
  • c99463904
  • 2017年08月20日 15:49
  • 802

算法之时间复杂度和空间复杂度

算法之时间复杂度和空间复杂度 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f...
  • e421083458
  • e421083458
  • 2013年10月13日 21:41
  • 1347
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法的时间复杂度和空间复杂度
举报原因:
原因补充:

(最多只允许输入30个字)