关闭

算法的时间复杂度和空间复杂度

267人阅读 评论(0) 收藏 举报
分类:

时间复杂度

时间复杂度简单的理解就是执行语句的条数。如果有循环和递归,则忽略简单语句,直接算循环和递归的语句执行次数。

比如:

[java] view plaincopy
  1. int x = 1;//时间复杂度为O(1)  
  2. for(int i=0; i<n; i++) {  
  3.     System.out.println(i);  
  4. }//时间复杂度为O(n)  
具体例子:

1、O(1)

[java] view plaincopy
  1. int x = 1;  

2、O(n)

[java] view plaincopy
  1. for(int i=0; i<n; i++) {  
  2.     System.out.println(i);  
  3. }  

3、O()

[html] view plaincopy
  1. int n = 8count = 0;;  
  2. for(int i=1; i<=n; i *= 2) {  
  3.     count++;  
  4. }  

4、

[html] view plaincopy
  1. int n = 8count = 0;;  
  2. for(int i=1; i<=n; i++) {  
  3.     for(int j=1; j<=n; j++) {  
  4.         count++;  
  5.     }  
  6. }  

5、

[java] view plaincopy
  1. int n = 8, count = 0;;  
  2. for(int i=1; i<=n; i *= 2) {  
  3.     for(int j=1; j<=n; j++) {  
  4.         count++;  
  5.     }  
  6. }  

所举例子都比较简单。

空间复杂度

空间复杂度也很简单的理解为临时变量占用的存储空间。一个简单例子:

[java] view plaincopy
  1. //交换两个变量x和y  
  2. int x=1, y=2;  
  3. int temp = x;  
  4. x = y;  
  5. y = temp;  

一个临时变量temp,所以空间复杂度为O(1)。

//////////////////////////////////////////////////////////////////////////////////////////////

要在 hash 表中找到一个元素就是 O(1)
要在无序数组中找到一个元素就是 O(n)

访问数组的第 n 个元素是 O(1)
访问链表的第 n 个元素是 O(n)

我给你一个简单的判断方法:
如果实现中没有循环就是 O(1)
如果实现中有一个循环就是 O(n)

//////////////////////////////////////////////////////////////////////////////////

举个简单的例子,要从0加到n,我们会这么写:
int sum = 0;
for(int i = 0; i<=n; ++i)
{
   sum += i;
}
一共算了n次加法,那么就说这个时间复杂度是O(n)。当然O(n)的精确的概念是,是n的最高次方,比如,某个计算共计算了3n + 2次,那么这个时间复杂度也是O(n),因为3n + 2中的最高次方是n。

如果代码这么写:
int sum = 0;
for(int i = 0; i<=n; ++i)
{
   for(int j = 0; j <=n; ++j)
   {
      sum += (i + j);
   }
}

很显然一共算了n^2次加法,那么就说这个时间复杂度是O(n^2),和上面类似,如果某个算法计算了3*n^2 + n + 1次,其时间复杂度仍然是O(n^2),因为3*n^2 + n + 1中最高的次方是n^2

所谓O(1)就是计算的次数是个常量,我们还以上面从0加到n的例子来说,如果我们用等差数列的公式,那么,代码可以这么写:
int sum = n * (n + 1) / 2
不管n有多大(当然不能溢出了),通过上面的公式只需计算一次,也就说计算的次数是不变的,这种情况的时间复杂度就可以说成O(1)。 再比如如果某个计算,不管其他条件怎么变化,均只需计算5次即可得出结果,那么这种情况的时间复杂度,也是O(1)。

///////////////////////////////////////////////////////////////////////////////////////

把输入规模看成x轴,所花时间/空间看成y轴。
O(n)就是 y = x, y随x的增长而线性增长。一条斜线
O(1)就是 y = 1,不管x如何变,y不变。一条与x平行的线

//////////////////////////////////////////////////////////////////////////////////////

以快速排序为例,第i轮中,数据集已被分为2^(i-1)块,在选定这么多个pivot之后,要遍历所有n个元素才能把所有2^(i-1)个块分为2^i块,这个过程一共要做log(n)次,可不就是n*log(n)?

///////////////////////////////////////////////////////////////////////////////////

把n的问题看成一棵二叉树。
log N算法就是从root找到一个叶子结点,复杂度为树高,也就是 log N。
N log N算法则是从root找到每一个叶子结点,复杂度为树高*叶子结点个数,也就是logN * N


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:123309次
    • 积分:1604
    • 等级:
    • 排名:千里之外
    • 原创:22篇
    • 转载:142篇
    • 译文:0篇
    • 评论:4条
    最新评论