算法的时间复杂度和空间复杂度

转载 2015年07月08日 00:43:29

时间复杂度

时间复杂度简单的理解就是执行语句的条数。如果有循环和递归,则忽略简单语句,直接算循环和递归的语句执行次数。

比如:

[java] view plaincopy
  1. int x = 1;//时间复杂度为O(1)  
  2. for(int i=0; i<n; i++) {  
  3.     System.out.println(i);  
  4. }//时间复杂度为O(n)  
具体例子:

1、O(1)

[java] view plaincopy
  1. int x = 1;  

2、O(n)

[java] view plaincopy
  1. for(int i=0; i<n; i++) {  
  2.     System.out.println(i);  
  3. }  

3、O()

[html] view plaincopy
  1. int n = 8count = 0;;  
  2. for(int i=1; i<=n; i *= 2) {  
  3.     count++;  
  4. }  

4、

[html] view plaincopy
  1. int n = 8count = 0;;  
  2. for(int i=1; i<=n; i++) {  
  3.     for(int j=1; j<=n; j++) {  
  4.         count++;  
  5.     }  
  6. }  

5、

[java] view plaincopy
  1. int n = 8, count = 0;;  
  2. for(int i=1; i<=n; i *= 2) {  
  3.     for(int j=1; j<=n; j++) {  
  4.         count++;  
  5.     }  
  6. }  

所举例子都比较简单。

空间复杂度

空间复杂度也很简单的理解为临时变量占用的存储空间。一个简单例子:

[java] view plaincopy
  1. //交换两个变量x和y  
  2. int x=1, y=2;  
  3. int temp = x;  
  4. x = y;  
  5. y = temp;  

一个临时变量temp,所以空间复杂度为O(1)。

//////////////////////////////////////////////////////////////////////////////////////////////

要在 hash 表中找到一个元素就是 O(1)
要在无序数组中找到一个元素就是 O(n)

访问数组的第 n 个元素是 O(1)
访问链表的第 n 个元素是 O(n)

我给你一个简单的判断方法:
如果实现中没有循环就是 O(1)
如果实现中有一个循环就是 O(n)

//////////////////////////////////////////////////////////////////////////////////

举个简单的例子,要从0加到n,我们会这么写:
int sum = 0;
for(int i = 0; i<=n; ++i)
{
   sum += i;
}
一共算了n次加法,那么就说这个时间复杂度是O(n)。当然O(n)的精确的概念是,是n的最高次方,比如,某个计算共计算了3n + 2次,那么这个时间复杂度也是O(n),因为3n + 2中的最高次方是n。

如果代码这么写:
int sum = 0;
for(int i = 0; i<=n; ++i)
{
   for(int j = 0; j <=n; ++j)
   {
      sum += (i + j);
   }
}

很显然一共算了n^2次加法,那么就说这个时间复杂度是O(n^2),和上面类似,如果某个算法计算了3*n^2 + n + 1次,其时间复杂度仍然是O(n^2),因为3*n^2 + n + 1中最高的次方是n^2

所谓O(1)就是计算的次数是个常量,我们还以上面从0加到n的例子来说,如果我们用等差数列的公式,那么,代码可以这么写:
int sum = n * (n + 1) / 2
不管n有多大(当然不能溢出了),通过上面的公式只需计算一次,也就说计算的次数是不变的,这种情况的时间复杂度就可以说成O(1)。 再比如如果某个计算,不管其他条件怎么变化,均只需计算5次即可得出结果,那么这种情况的时间复杂度,也是O(1)。

///////////////////////////////////////////////////////////////////////////////////////

把输入规模看成x轴,所花时间/空间看成y轴。
O(n)就是 y = x, y随x的增长而线性增长。一条斜线
O(1)就是 y = 1,不管x如何变,y不变。一条与x平行的线

//////////////////////////////////////////////////////////////////////////////////////

以快速排序为例,第i轮中,数据集已被分为2^(i-1)块,在选定这么多个pivot之后,要遍历所有n个元素才能把所有2^(i-1)个块分为2^i块,这个过程一共要做log(n)次,可不就是n*log(n)?

///////////////////////////////////////////////////////////////////////////////////

把n的问题看成一棵二叉树。
log N算法就是从root找到一个叶子结点,复杂度为树高,也就是 log N。
N log N算法则是从root找到每一个叶子结点,复杂度为树高*叶子结点个数,也就是logN * N


相关文章推荐

各种排序算法的时间/空间复杂度稳定性

原文链接1,感谢原作者 1.冒泡排序:n*n。 俩个for循环决定其时间复杂度为n^2 template class T> void Swap(T A[], int i, in...

算法的时间与空间复杂度

算法的时间与空间复杂度 一、算法的时间复杂度 1、算法的执行时间和频度 !*首先明确一下一些专业术语的概念 *算法的执行时间=所有语句执行时间的总和 *语句执行时间=...
  • liyuru4
  • liyuru4
  • 2016年06月18日 22:28
  • 399

简单排序算法时间空间复杂度分析及应用(4)-二分插入排序

简单排序算法时间空间复杂度分析及应用(4)-二分插入排序         背景: 顾名思义,这个二分插入排序是直接插入排序的进化版,主要变化的地方就是在内循环部分,即外循环的循环节点在确定区域...

数据结构(一):数据结构的基本概念和算法的时间和空间复杂度

数据结构讨论的范畴 计算机技术的两大支柱:1是数据结构,2是算法。在某种程度上讲,程序设计等同于数据结构+算法。 程序设计是为计算机设计一组指令集,算法是解决问题的策略,数据结构是模型。 ...

算法的时间和空间复杂度

算法 时间复杂度 空间复杂度

简单排序算法时间空间复杂度分析及应用(6)-鸡尾酒排序(双冒泡排序)

简单排序算法时间空间复杂度分析及应用(5)-鸡尾酒排序(双冒泡排序) 顾名思义,鸡尾酒排序是属于冒泡排序的一种改进,从数据集合的两边进行冒泡排序,因此在排序过 程中确定数据区域会有两个,分别在数据集...

简单排序算法时间空间复杂度分析及应用(1)-冒泡排序

简单排序算法时间空间复杂度分析及应用-冒泡排序  冒泡排序算法,我上大学一开始接触的算法就是冒泡排序算法,这是算法入门知识,通过冒泡排序算法我接触了循环的概念,循环有开始节点和结束节点,并且算法会经历...

计算算法的时间和空间复杂度

1、时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时...

简单排序算法时间空间复杂度分析及应用(3)-快速排序

简单排序算法时间空间复杂度分析及应用(3)-快速排序 和之前的两种算法比较:       1.快速算法适合在n值(排序规模比较大)较大的场景下使用,快速排序算法时间会少一点。       2.冒泡排序...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法的时间复杂度和空间复杂度
举报原因:
原因补充:

(最多只允许输入30个字)