svo的Supplementary matterial 推导过程

在看本博客之前请先看svo的Supplementary matterial .以下的过程借鉴了肖师兄的depth filter.pdf和高翔的推导,将给出公式(17)-(26)的推导推导过程,如果发现有错误之处,敬请指正.(qq:1347893477)

===(πN(x|Z,τ2))+(1π)U(x))N(Z|μ,σ2)Beta(π|a,b)πN(x|Z,τ2)N(Z|μ,σ2)Beta(π|a,b)+(1π)U(x)N(Z|μ,σ2)Beta(π|a,b)aa+bN(Z|μ,σ2)N(Z|μ,σ2)Beta(π|a+1,b)+ba+bU(x)N(Z|μ,σ2)Beta(π|a,b+1)aa+bN(x|μ,σ2+τ2)N(Z|m,s2)Beta(π|a+1,b)+ba+bU(x)N(Z|μ,σ2)Beta(π|a,b+1)(17)(18)

对比可知: N(x|Z,τ2)N(x|Z,σ2)=N(x|μ,σ2+τ2)N(Z|m,s2) \
取出 N(x|Z,τ2)N(x|Z,σ2) 展开为:
===========N(x|Z,τ2)N(Z|μ,σ2)12πτe(xZ)22τ212πσe(Zμ)22σ212πτσe(xZ)22τ2(Zμ)22σ212πτσeσ2(xZ)2+τ2(Zμ)22τ2σ212πτσe(σ2+τ2)Z22(xσ2+μτ2)Z+x2σ2+μ2τ22τ2σ212π(σ2+τ2)12πσ2τ2(σ2
### SVO 2.0 的回环检测机制 SVO 2.0 是一款实时单目视觉里程计框架,专注于高效性和准确性。然而,在其设计目标中并未特别强调全局优化或回环检测的功能[^1]。具体来说: - **核心功能**:SVO 2.0 主要关注局部地图构建和相机位姿估计,通过稀疏特征点跟踪来实现实时性能。它并不内置完整的回环检测模块,而是更倾向于提供一个轻量级的前端处理方案[^2]。 如果需要实现回环检测(loop closure),通常可以考虑与其他后端工具集成,例如基于词袋模型(Bag of Words, BoW)的方法或者利用全球描述符(Global Descriptor)。以下是几种常见的扩展方式及其注意事项: #### 集成外部回环检测方法 1. **词袋模型 (BoW)** 使用 BoW 方法可以在图像间建立相似度匹配关系,从而识别闭环候选帧。这种方法依赖于提取关键帧中的局部特征并将其存储到数据库中以便后续检索。当发现潜在闭合时,可以通过几何验证进一步确认闭环的有效性。 2. **全局描述子** 另一种策略是采用预训练好的卷积神经网络(CNN)生成每张图片对应的固定长度向量作为全局描述子。这些描述子能够快速比较两张图之间的语义差异程度,进而筛选出可能构成闭环的一组候选对。 3. **与 SLAM 后端结合** 对于某些应用场合而言,单独依靠 SVO 提供的信息不足以完成精确的大范围定位任务,则可引入专门针对此目的开发的地图管理器以及相应的优化算法(如 Pose Graph Optimization 或 Bundle Adjustment),它们往往已经包含了成熟的 loop closure 处理逻辑。 #### 示例代码片段展示如何调用第三方库进行简单回环测试 假设我们选用 ORB-SLAM 中的部分组件辅助完成这项工作,下面给出一段伪代码用于说明基本流程: ```cpp // 假设已初始化好必要的对象实例 BowVocabulary bow_vocab; // 加载预先训练得到的 BOW 模型参数文件 LoopDetector loop_detector(&bow_vocab); void processFrame(const cv::Mat& img){ Keyframe kf(img); // 创建新关键帧 std::vector<Keyframe*> candidates; bool is_loop_found = loop_detector.SearchCandidates(kf,&candidates); if(is_loop_found && VerifyGeometryConsistency(candidates)){ ApplyPoseGraphOptimization(); } } ``` 上述例子仅作示意用途,并未完全体现实际工程里的复杂情况;真实部署过程中还需要充分考虑到计算资源分配、延迟容忍限度等因素的影响。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值