hdu 4746 Mophues 莫比乌斯 分块优化

Description

As we know, any positive integer C ( C >= 2 ) can be written as the multiply of some prime numbers: 
    C = p1×p2× p3× ... × pk 
which p1, p2 ... pk are all prime numbers.For example, if C = 24, then: 
    24 = 2 × 2 × 2 × 3 
    here, p1 = p2 = p3 = 2, p4 = 3, k = 4 

Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P. 

Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor"). 

Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.

 

Input

The first line of input is an integer Q meaning that there are Q test cases. 
Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×10 5. Q <=5000).

 

Output

For each test case, print the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of P.

 

Sample Input

210 10 010 10 1 

 

Sample Output

6393 


然后由莫比乌斯反演,我们知道f(d)=g(d)*u(1)+g(2*d)*u(2)+g(3*d)*u(3)+....

考虑结果ans,ans为所有f(d)且F(d)<=P的和,

我们枚举1<=i<=n,如果i是某个d的倍数且F(d)<=P,那么ans+=g(i)*u(i/d)=[n/i]*[m/i]*u(i/d)。那么这个怎么计算能更快一点?

我们设G(i)为容斥因子:G(i)=sum{u(i/d) | F(d)<=P} 这个值可以nlogn预处理出来,然后我们只需要ans+=G(i)*[n/i]*[m/i]即可

这样的话总的复杂度为O(n*q)还是会T的样子

然后我们注意到[n/i]*[m/i]在一定的范围内是不变的,这个范围是[i,min(n/(n/i),m/(m/i)],这样我们可以预处理出G(i)的前缀和,然后加快运算(复杂度网上说是sqrt(n)的。。。)

这样总的复杂度是O(q*sqrt(n)+nlog(n))大概这样.


#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<bitset>
#define fi first
#define se second
#define pii pair<int,int>
#define ll long long
#define inf 1<<30
#define eps 1e-8
using namespace std;
const int maxn=500010;
int num[maxn];
int cnt[19][maxn];
int n,m,p;
int mu[maxn],prime[maxn],tot;
bool check[maxn];
void getmu()
{
    int N=500000;
    memset(check,0,sizeof(check));
    mu[1]=1,tot=0;
    for(int i=2;i<=N;i++){
        if(!check[i])
            prime[tot++]=i,mu[i]=-1;
        for(int j=0;j<tot;j++){
            if(i*prime[j]>N)
                break;
            check[i*prime[j]]=true;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }
            else
                mu[i*prime[j]]=-mu[i];
        }
    }
    for(int i=1;i<=N;i++) {
        int u=i;
        int v=0;
        for(int j=0;j<tot;j++) {
            if(prime[j]*prime[j]>u)
                break;
            while(u%prime[j]==0) {
                u/=prime[j];
                v++;
            }
        }
        if(u>1) v++;
        num[i]=v;
    }
}
void init()
{
    memset(cnt,0,sizeof(num));
    int N=500000;
    for(int i=1;i<=N;i++) {
        for(int j=i;j<=N;j+=i) {
            cnt[num[i]][j]+=mu[j/i];
        }
    }
    for(int i=1;i<=N;i++) {
        for(int j=1;j<=18;j++) {
            cnt[j][i]+=cnt[j-1][i];
        }
    }
    for(int i=0;i<=18;i++) {
        for(int j=1;j<=N;j++) {
            cnt[i][j]+=cnt[i][j-1];
        }
    }
}
int main()
{
    getmu();
    init();
    int t;
    scanf("%d",&t);
    while(t--) {
        scanf("%d%d%d",&n,&m,&p);
        if(p>18) {
            printf("%I64d\n",(ll)n*m);
            continue;
        }
        ll ans=0;
        if(n>m) swap(n,m);
        for(int i=1;i<=n;) {
            int j=min(n/(n/i),m/(m/i));
            //cout<<i<<" "<<j<<endl;
            ans+=(ll)(cnt[p][j]-cnt[p][i-1])*(n/i)*(m/i);
            i=j+1;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}


### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值