[深度学习]交叉熵(Cross Entropy)算法实现及应用

写在前面:要学习深度学习,就不可避免要学习Tensorflow框架。初了解Tensorflow的基础知识,看到众多API,觉得无从下手。但是到了阅读完整项目代码的阶段,通过一个完整的项目逻辑,就会让我们看到的不只是API,而是API背后,与理论研究相对应的道理。除了Tensorflow中文社区的教程,最近一周主要在阅读DCGAN的代码(Github:https://github.com/carpedm20/DCGAN-tensorflow)。在阅读代码的过程中,遇到了很多问题,也学习了不少知识。接下来的篇幅,围绕DCGAN代码中出现的知识点,记录我的学习过程。

 

一.交叉熵(Cross Entropy)

交叉熵(Cross Entropy)是Shannon信息论中的一个重要概念,主要用于度量两个概率分布间的差异性信息。

公式如下:

其中,p表示真实标记的分布,q则为训练后的模型的预测标记分布。利用交叉熵,可以衡量p与q的相似性。交叉熵在神经网络中可以作为损失函数。

 

二.应用场景

在Tensorflow中,针对分类问题,定义了四个交叉熵函数,分别是:

1)tf.nn.sigmoid_cross_entropy_with_logits

2)tf.nn.softmax_cross_entropy_with_logits

3)tf.nn.sparse_softmax_cross_entropy_with_logits

4)tf.nn.weighted_cross_entropy_with_logits

 

1)tf.nn.sigmoid_cross_entropy_with_logits

[适用场景]:二分类或者多目标问题

二分类:将目标分为两类

多目标:例如,判断图片中是否包含10种动物。这10个分类之间是相互独立的,但不是相互排斥的。也就是说,图片中可以包含动物x,也可以包含动物y。对于每一个动物类别而言,其实也是一个二分类问题。与多目标问题不同的是,多分类问题要求这10个分类之间是相互排斥的。

[实际应用]:在DCGAN网络中,计算Discriminator和 Generator的 loss的时候,使用的是tf.nn.sigmoid_cross_entropy_with_logits。因为是判断输入Discriminator的数据是真实数据还是由Generator生成的数据,也就是判断数据是1还是0,相当于一个二分类问题。

[API]:tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, names=None)

定义:

`x = logits`, `z = targets`.

逻辑损失为:
        z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
      = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
      = (1 - z) * x + log(1 + exp(-x))
      = x - x * z + log(1 + exp(-x))
当x<0的时候,为了避免exp(-x)溢出,将上述等式改为:
        x - x * z + log(1 + exp(-x))
      = log(exp(x)) - x * z + log(1 + exp(-x))
      = - x * z + log(1 + exp(x))
  因此,将x>0与x<0时的情况统一起来可以得到:
      max(x, 0) - x * z + log(1 + exp(-abs(x)))

 

Args:
    logits: 未经sigmoid缩放的输入logits,即类型为float32或者float64,shape为[batch_size,num_classes]的tensor。
    targets: 目标targets,即与logits具有相同类型和shape的tensor。
    name: 操作的名称(可选)。

  Returns:

   计算得到的sigmoid交叉熵,即与logits具有相同shape的tensor。

  Raises:
    ValueError:如果logits和targets的shape不同,则会抛出异常。

代码举例:

 

# coding:utf-8
import tensorflow as tf
    
def sigmoid_cross_entropy_with_logits(x, y):
      try:
        return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, labels=y)
      except:
        return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, targets=y)
      
def main(_):
    logits = [[0.5,0.7,0.3],[0.8,0.2,0.9]]
    loss = sigmoid_cross_entropy_with_logits(logits, tf.ones_like(logits))
    sess = tf.Session()
    print sess.run(loss)

if __name__ == '__main__':
  tf.app.run()

运行结果为:

 


注意事项:

(1)输入logits是未经缩放的,该操作内部会对logits使用sigmoid操作。

(2)logits和labels(targets)必须具有相同的shape。

 

2)tf.nn.softmax_cross_entropy_with_logits

[适用场景]:多分类问题

也就是将输入分为多类,每一类都是相互排斥的。

[实际应用]:例如,在tensorflow的cifar10示例中,判断图片的动物具体是哪一种,只能是某一种类型。

[API]:softmax_cross_entropy_with_logits(logits, labels, dim=-1, name=None)

Args:

    logits: 未经softmax缩放的输入logits,即类型为float16,float32或者float64,shape为[batch_size,num_classes]的tensor。
    labels: 目标targets,即与logits具有相同类型和shape的tensor。
    dim: 分类的类别所在的维度。默认为-1,也就是最后一维。
    name: 操作的名称(可选)。

  Returns:   

    计算得到的softmax交叉熵,也就是一维tensor,与输入的logits中的batch_size大小相同。

代码举例:

 

# coding:utf-8
import tensorflow as tf

def main(_):
    logits = [[2,0.5,1],[0.1,1,3]]
    labels = [[0.2,0.3,0.5],[0.1,0.6,0.3]]
    logits_scaled = tf.nn.softmax(logits)
    
    result1 = tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=labels)
    result2 = -tf.reduce_sum(labels*tf.log(logits_scaled),1)
    result3 = tf.nn.softmax_cross_entropy_with_logits(logits=logits_scaled,labels=labels)
    
    with tf.Session() as sess:
        print '直接使用API计算softmax交叉熵:'
        print sess.run(result1)
        print '\n'
        print '利用原理计算softmax交叉熵:'
        print sess.run(result2)
        print '\n'
        print '错误!将logits输入事先用softmax缩放:'
        print sess.run(result3)
        
if __name__ == '__main__':
    tf.app.run()

运行结果:

 

 

3)tf.nn.sparse_softmax_cross_entropy_with_logits

[应用场景]:多分类问题

tf.nn.sparse_softmax_cross_entropy_with_logits是 tf.nn.softmax_cross_entropy_with_logits的易用版本,除了输入参数不同,作用和算法实现都是一样的。前面提到softmax_cross_entropy_with_logits的输入必须是类似onehot encoding的多维特征,但是CIFAR-10,ImageNet和大部分分类场景都只有一个分类目标,label都是从0编码的整数,每次转成one hot encoding比较麻烦。那么,就可以使用tf.nn.sparse_softmax_cross_entropy_with_logits,直接使用类别索引作为labels,而不用转为one hot encoding。

例如:类别2,在softmax_cross_entropy_with_logits中labels可以表示为[0,0,1];在sparse_softmax_cross_entropy_with_logits中labels可以表示为2。

[API]:sparse_softmax_cross_entropy_with_logits(logits, labels, name=None)

Args:
    logits:未经softmax缩放的输入logits,即类型为float32或者float64,shape为[d_0, d_1, ..., d_{r-2}, num_classes]的tensor。

    labels: 标签,即类型为int32或者int64,shape为[d_0, d_1, ..., d_{r-2}]的tensor 。[d_0, d_1, ..., d_{r-2}]代表batch_size。labels中的每一项都必须是范围为[0, num_classes)的索引,也就是代表label是属于哪一类的。

    name: 操作的名称(可选)。

  Returns:
    表示softmax交叉熵的tensor。与labels具有相同的shape,也就是batch_size。与输入logits具有相同的类型。

代码举例:

# coding:utf-8
import tensorflow as tf

def main(_):
    logits = [[2,0.5,1],[0.1,1,3]]
    labels = [[0,1,0],[0,0,1]]
    labels2 = [1,2]
    
    result= tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=labels)
    result2= tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=labels2)
    with tf.Session() as sess:
        print 'softmax_cross_entropy_with_logits,输入logits:[[0,1,0],[0,0,1]]'
        print sess.run(result)
        print'\n'
        print 'sparse_softmax_cross_entropy_with_logits,输入logits:[1,2]'
        print sess.run(result2)
        
if __name__ == '__main__':
    tf.app.run()

运行结果:


 

 

4)tf.nn.weighted_cross_entropy_with_logits

[应用场景]:tf.nn.weighted_cross_entropy_with_logits是tf.nn.sigmoid_cross_entropy_with_logits的扩展版,输入参数和实现与后者类似,不同之处在于增加了一个pos_weight参数,目的是可以增加或者减小正样本在计算Cross Entropy时的loss。

[API]:weighted_cross_entropy_with_logits(logits, targets, pos_weight, name=None):

在前面介绍tf.nn.sigmoid_cross_entropy_with_logits时,已经提到过,一般计算交叉熵的方法为:
targets * -log(sigmoid(logits)) + (1 - targets) * -log(1 - sigmoid(logits))

pos_weight用于正样本的loss计算项上:
    targets * -log(sigmoid(logits)) * pos_weight +(1 - targets) * -log(1 - sigmoid(logits))
展开来就是:
        qz * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
      = qz * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
      = qz * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
      = qz * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
      = (1 - z) * x + (qz +  1 - z) * log(1 + exp(-x))
      = (1 - z) * x + (1 + (q - 1) * z) * log(1 + exp(-x))
 令l = (1 + (q - 1) * z),为了避免溢出,最终实现为:
      (1 - z) * x + l * (log(1 + exp(-abs(x))) + max(-x, 0))
  `logits` 和 `targets`必须具有相同的类型和shape。

  Args:
    logits: 输入logits,即类型为float32或者float64,shape为[batch_size,num_classes]的tensor。
    targets: 与logits具有相同类型和shape的tensor。
    pos_weight: 系数,用于正样本上。
    name: 操作名称(可选)。

Returns:
   与logits具有相同shape的损失tensor。

  Raises:
    ValueError:如果logits和targets的shape不同,则会抛出异常。

代码举例:

 

# coding:utf-8
import tensorflow as tf
      
def main(_):
    logits = [[0.5,0.7,0.3],[0.8,0.2,0.9]]
    
    loss = tf.nn.sigmoid_cross_entropy_with_logits(logits, tf.ones_like(logits))
    loss2 = tf.nn.weighted_cross_entropy_with_logits(logits, tf.ones_like(logits), 0.2)
    loss3 = tf.nn.weighted_cross_entropy_with_logits(logits, tf.ones_like(logits), -0.2)
    with tf.Session() as sess:
      print 'sigmoid_cross_entropy_with_logits,没有pos_weight:'
      print sess.run(loss)
      print'\n'
      print 'weighted_cross_entropy_with_logits,正的pos_weight:'
      print sess.run(loss2)
      print'\n'
      print 'weighted_cross_entropy_with_logits,负的pos_weight:'
      print sess.run(loss3)

if __name__ == '__main__':
  tf.app.run()

运行结果:

 

三.总结

我们可以根据业务需求(分类目标是否独立或者互斥)来选择基于sigmoid或者softmax的实现。在这两大类里面,再根据实际需求来选择使用tf.nn.sigmoid_cross_entropy_with_logits或者tf.nn.weighted_sigmoid_cross_entropy_with_logits,tf.nn.softmax_cross_entropy_with_logits或者tf.nn.sparse_softmax_cross_entropy_with_logits。

浅显解读,更深层次,移步Tensorflow官方文档。

参考博客:http://dataunion.org/26447.html

 

 

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
常用的深度学习损失函数有以下几种: 1. 均方误差(Mean Squared Error,MSE):适用于回归问题,计算预测值与真实值之间的平均差的平方。 2. 交叉熵损失(Cross-Entropy Loss):适用于分类问题,计算预测概率分布与真实标签之间的交叉熵。 3. 对数似然损失(Log-Likelihood Loss):适用于分类问题,计算预测概率分布与真实标签之间的对数似然。 4. Hinge损失:适用于支持向量机(SVM)等分类问题,用于最大间隔分类器。 5. KL散度(Kullback-Leibler Divergence):适用于概率分布的比较,计算两个概率分布之间的差异。 这些损失函数可以通过在深度学习框架中调用相应的API进行实现。例如,在TensorFlow中,可以使用tf.losses库来调用这些损失函数。在PyTorch中,可以使用torch.nn.functional库来实现这些损失函数。 以下是一个在PyTorch中使用交叉熵损失函数的示例: ```python import torch import torch.nn as nn # 定义模型 model = nn.Linear(10, 2) # 定义损失函数 loss_fn = nn.CrossEntropyLoss() # 随机生成输入和目标值 input = torch.randn(3, 10) # 输入数据 target = torch.empty(3, dtype=torch.long).random_(2) # 目标值 # 计算损失 loss = loss_fn(input, target) print(loss) ``` 在上述示例中,我们首先定义了一个线性模型和一个交叉熵损失函数。然后,我们随机生成了输入数据和目标值,并计算了模型的损失。最后,我们打印出了计算得到的损失值。 希望这个例子能够帮助你理解常用的深度学习损失函数的实现方式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值