递归神经网络(RNN)简介

转载:http://blog.csdn.net/aws3217150/article/details/50768453

在此之前,我们已经学习了前馈网络的两种结构——多层感知器卷积神经网络,这两种结构有一个特点,就是假设输入是一个独立的没有上下文联系的单位,比如输入是一张图片,网络识别是狗还是猫。但是对于一些有明显的上下文特征的序列化输入,比如预测视频中下一帧的播放内容,那么很明显这样的输出必须依赖以前的输入, 也就是说网络必须拥有一定的”记忆能力”。为了赋予网络这样的记忆力,一种特殊结构的神经网络——递归神经网络(Recurrent Neural Network)便应运而生了。网上对于RNN的介绍多不胜数,这篇《Recurrent Neural Networks Tutorial》对于RNN的介绍非常直观,里面手把手地带领读者利用Python实现一个RNN语言模型,强烈推荐。为了不重复作者 Denny Britz的劳动,本篇将简要介绍RNN,并强调RNN训练的过程与多层感知器的训练差异不大(至少比CNN简单),希望能给读者一定的信心——只要你理解了多层感知器,理解RNN便不是事儿:-)。

RNN的基本结构

首先有请读者看看我们的递归神经网络的容貌:
这里写图片描述
乍一看,好复杂的大家伙,没事,老样子,看我如何慢慢将其拆解,正所谓见招拆招,我们来各个击破。
上图左侧是递归神经网络的原始结构,如果先抛弃中间那个令人生畏的闭环,那其实就是简单”输入层=>隐藏层=>输出层”的三层结构,我们在多层感知器的介绍中已经非常熟悉,然而多了一个非常陌生的闭环,也就是说输入到隐藏层之后,隐藏层还会给自己也来一发,环环相扣,晕乱复杂。
我们知道,一旦有了环,就会陷入“先有蛋还是先有鸡”的逻辑困境,为了跳出困境我们必须人为定义一个起始点,按照一定的时间序列规定好计算顺序,做到有条不紊,于是实际上我们会将这样带环的结构展开成一个序列网络,也就是上图右侧被“unfold”之后的结构。先别急着能理解RNN,我们来点轻松的,先介绍这样的序列化网络结构包含的参数记号:

  • 网络某一时刻的输入xt将代表一个词向量,一整个序列就代表一句话。
  • ht的隐藏状态
  • ot的输出
  • 输入层到隐藏层直接的权重由U表示,它将我们的原始输入进行抽象作为隐藏层的输入
  • 隐藏层到隐藏层的权重W,它是网络的记忆控制者,负责调度记忆。
  • 隐藏层到输出层的权重V,从隐藏层学习到的表示将通过它再一次抽象,并作为最终输出。

RNN的Forward阶段

上一小节我们简单了解了网络的结构,并介绍了其中一些记号,是时候介绍它具体的运作过程了。首先在t=0通常初始化为0,然后进行如下计算:

s1=Ux1+Wh0h1=f(s1)o1=g(Vh1)
也可以是其他,也是随君所欲。
值得注意的是,我们说递归神经网络拥有记忆能力,而这种能力就是通过 W

RNN的Backward阶段

上一小节我们说到了RNN如何做序列化预测,也就是如何一步步预测出o1,o2,....ot1,ot,ot+1.....是如何炼成的。
其实没有多大新意,我们还是利用在之前讲解多层感知器卷积神经网络用到的backpropagation方法。也就是将输出层的误差Cost,然后利用梯度下降法更新各个权重。现在问题就是如何求解各个权重的梯度,其它的所有东西都在之前介绍中谈到了,所有的trick都可以复用。
由于是序列化预测,那么对于每一时刻t的计算。
回忆之前我们介绍多层感知器的backprop算法,我们知道算法的trick是定义一个δ=es呢?先看下图:
这里写图片描述
之前我们推导过,只要关注当前层次发射出去的链接即可,也就是

δht=(VTδot+WTδht+1).f(st)

只要计算出所有的 δot,δht
W=t⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢δh0,th0,t1,...,δh0,thi,t1,...,δh0,thm,t1...δhj,th0,t1,...,δhj,thi,t1,...,δhj,thm,t1...δhn,th0,t1,...,δhn,thi,t1,...,δhn,thm,t1⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥=tδht×ht1U=t⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢δh0,tx0,t,...,δh0,txi,t,...,δh0,txm,t...δhj,tx0,t,...,δhj,txi,t,...,δhj,txm,t...δhn,tx0,t,...,δhn,txi,t,...,δhn,txm,t⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥=tδht×xt
\nabla W=\sum_t \left[ \matrix{ {\delta_{0,t}^hh_{0,t-1},...,\delta_{0,t}^hh_{i,t-1},...,\delta_{0,t}^hh_{m,t-1}} \\... \\{\delta_{j,t}^hh_{0,t-1},...,\delta_{j,t}^hh_{i,t-1},...,\delta_{j,t}^hh_{m,t-1}} \\... \\{\delta_{n,t}^hh_{0,t-1},...,\delta_{n,t}^hh_{i,t-1},...,\delta_{n,t}^hh_{m,t-1}} } \right] = \sum_t \delta_t^h\times h_{t-1} \\\nabla U=\sum_t \left[ \matrix{ {\delta_{0,t}^hx_{0,t},...,\delta_{0,t}^hx_{i,t},...,\delta_{0,t}^hx_{m,t}} \\... \\{\delta_{j,t}^hx_{0,t},...,\delta_{j,t}^hx_{i,t},...,\delta_{j,t}^hx_{m,t}} \\... \\{\delta_{n,t}^hx_{0,t},...,\delta_{n,t}^hx_{i,t},...,\delta_{n,t}^hx_{m,t}} } \right] = \sum_t \delta_t^h\times x_t
其中 ×表示两个向量的外积。这样看来,只要你熟悉MLP的backprop算法,RNN写起程序来和MLP根本没有多大差异!手写naive的demo至少比CNN容易很多。

RNN的训练困难

虽然上一节中,我们强调了RNN的训练程序和MLP没太大差异,虽然写程序容易,但是训练起来却是千难万阻。为什么呢?因为我们的网络是根据输入而展开的,输入越长,展开的网络越深,那么对于“深度”网络训练有什么困难呢?最常见的是“gradient explode”和“gradient vanish”。这种问题在RNN中如何体现呢?为了强调这个问题,我们模仿Yoshua Bengio的论文《On the difficulty of training recurrent neural networks》的推导,重写一下RNN的梯度求解过程,为了推导方便,我们人为地为W,U,RNN就变成普通的MLP。打上标签后的RNN变成如下:
这里写图片描述
假如对于时刻t+1的梯度,可以如下计算:

et+1Wt+1=et+1ht+1ht+1Wt+1

反复运用链式法则,我们可以求出每一个 W1,W2,....,WtWt+1都是不打标签的,也就是在不同时刻都是共享同样的参数,这样可以大大减少训练参数,和CNN的共享权重类似。对于共享参数的RNN,我们只需将上述的一系列式子抹去标签并求和,就可以得到Yoshua Bengio论文中所推导的梯度计算式子:
etW=1ktethtk<ithihi1+hkW

其中 +hkW时,“gradient explode”也就产生了。
为了克服”gradient vanish”的问题,LSTM和GRU模型便后续被推出了,为什么LSTM和GRU可以克服gradient vanish问题呢?由于它们都有特殊的方式存储”记忆”,那么以前gradient比较大的”记忆”不会像简单的RNN一样马上被抹除,因此可以一定程度上克服gradient vanish问题。
另一个简单的技巧可以用来克服gradient explode的问题就是gradient clipping,也就是当你计算的gradient超过阈值 c。这种trick的表现形式如下图虚线所示:
这里写图片描述
上图所示是RNN的Error Sufface,可以看到RNN的Error Sufface要么非常陡峭,要么非常平坦,如果不采取任何措施,当你的参数在某一次更新之后,刚好碰到陡峭的地方,此时gradient变得非常大,那么你的参数更新也会非常大,很容易导致震荡问题。而如果你采取了gradient clipping这个技巧,那么即使你不幸碰到陡峭的地方,gradient也不会explode,因为被你限制在某个阈值 c
有趣的是,正是因为训练深度网络的困难,才导致神经网络这种古老模型沉寂了几十年,不过现在硬件的发展,训练数据的增多,神经网络重新得以复苏,并以重新以深度学习的外号杀出江湖。

参考引用

《Recurrent Neural Networks Tutorial》
《On the difficulty of training recurrent neural networks》

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值