深度学习这颗深水炸弹,把无数长期依赖于hand-crafted local feature + Machine learning的CV研究者炸了个底朝天,在图像识别领域捷报频传。在CV圈子中谈DL,免不了要讲生物视觉。深度学习的拥护者,往往会从大脑结构的角度来解释DL得以成功的原因。相信大家已经无数次在介绍DL的材料中看到类似下面这张图:
图1. 大脑视觉神经结构
图1所示正是大脑的视觉神经结构,从这张图中我们可以发现一条视觉信号从视网膜(
深度学习在图像识别领域的成功部分归因于其与生物视觉系统的相似性。本文探讨了视觉信号从视网膜经过外膝体到视觉皮层的路径,特别关注V1、V2和V4区的功能。V1区负责边缘检测,V2区进行初级形状检测,而V4区执行高层的视觉抽象。简单细胞的感受野与Gabor滤波器的相似性揭示了手工设计局部特征与生物视觉系统的联系,而深度学习则能模拟从V1到V4的完整物体识别过程。
深度学习这颗深水炸弹,把无数长期依赖于hand-crafted local feature + Machine learning的CV研究者炸了个底朝天,在图像识别领域捷报频传。在CV圈子中谈DL,免不了要讲生物视觉。深度学习的拥护者,往往会从大脑结构的角度来解释DL得以成功的原因。相信大家已经无数次在介绍DL的材料中看到类似下面这张图:
图1. 大脑视觉神经结构
图1所示正是大脑的视觉神经结构,从这张图中我们可以发现一条视觉信号从视网膜(
6513

被折叠的 条评论
为什么被折叠?