java获取当天的开始时间,当前周的开始时间

   在程序里面要获取当前的开始时间和结束时间,以及当前天所在的周的开始时间和结束时间,在这个地方记录一下。

      当天开始时间:

 

Java代码   收藏代码
  1. Calendar currentDate = new GregorianCalendar();   
  2.   
  3. currentDate.set(Calendar.HOUR_OF_DAY, 0);  
  4. currentDate.set(Calendar.MINUTE, 0);  
  5. currentDate.set(Calendar.SECOND, 0);  
  6. dateCursor.setTodayStart((Date)currentDate.getTime().clone());  
   
    当天结束时间:
Java代码   收藏代码
  1. Calendar currentDate = new GregorianCalendar();   
  2.   
  3. currentDate.set(Calendar.HOUR_OF_DAY, 23);  
  4. currentDate.set(Calendar.MINUTE, 59);  
  5. currentDate.set(Calendar.SECOND, 59);  
  6. dateCursor.setTodayEnd((Date)currentDate.getTime().clone());  

    

    当周开始时间:

Java代码   收藏代码
  1. Calendar currentDate = new GregorianCalendar();   
  2. currentDate.setFirstDayOfWeek(Calendar.MONDAY);  
  3.           
  4. currentDate.set(Calendar.HOUR_OF_DAY, 0);  
  5. currentDate.set(Calendar.MINUTE, 0);  
  6. currentDate.set(Calendar.SECOND, 0);  
  7. currentDate.set(Calendar.DAY_OF_WEEK, Calendar.MONDAY);  
  8. dateCursor.setWeekStart((Date)currentDate.getTime().clone());  

 

     当周结束时间:

    

Java代码   收藏代码
  1. Calendar currentDate = new GregorianCalendar();   
  2. currentDate.setFirstDayOfWeek(Calendar.MONDAY);  
  3. currentDate.set(Calendar.HOUR_OF_DAY, 23);  
  4. currentDate.set(Calendar.MINUTE, 59);  
  5. currentDate.set(Calendar.SECOND, 59);  
  6. currentDate.set(Calendar.DAY_OF_WEEK, Calendar.SUNDAY);  
  7. dateCursor.setWeekEnd((Date)currentDate.getTime().clone());  
### Clip 教程 Clip 是一种强大的多模态模型,能够处理图像和文本之间的关系。为了更好地理解和应用 Clip,在作中可以遵循以下指导。 #### 安装依赖库 要开始使用 Clip,首先需要安装必要的 Python 库。可以通过 pip 工具来完成这一过程[^1]: ```bash pip install torch torchvision transformers ``` #### 导入所需模块并加载预训练模型 接着导入所需的 Python 模块,并通过 Hugging Face 的 `transformers` 库加载预先训练好的 Clip 模型及其对应的处理器: ```python from PIL import Image import requests from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") ``` #### 准备输入数据 准备一些图片作为测试样本,这里以 URL 形式的网络图片为例说明如何读取它们;同时也准备好想要匹配的文字描述列表: ```python url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = ["a photo of a cat", "a photo of a dog"] ``` #### 处理输入并将结果传递给模型 利用之前例化的 Processor 对象对上述获取到的数据进行编码转换成适合喂给 Clip 模型的形式,之后调用 model 方法计算相似度得分矩阵: ```python inputs = processor(text=texts, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # 获取概率分布 print(probs) ``` 以上就是基于 PyTorch 和 Transformers 库现的一个简单版本的 Clip 使用案例。这段代码展示了怎样从零构建一个完整的流程来进行跨模态检索任务——即给出一张照片以及若干候选文字解释后找出最贴切的那个选项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值