本科课程参见:《软件学院那些课》
牛顿迭代公式
设已知方程f(x)=0的近似根x0 ,则在x0附近f(x)可用一阶泰勒多项式近似代替.因此, 方程f(x)=0可近似地表示为p(x)=0。用x1表示p(x)=0的根,它与f(x)=0的根差异不大.
设 ,由于x1满足
解得
重复这一过程,得到迭代公式:
这就是著名的牛顿迭代公式,它相应的不动点方程为
Jacobi迭代公式解线性方程组
线性方程组基本解法:
若方程组可同解变形为
Jaco
本科课程参见:《软件学院那些课》
设已知方程f(x)=0的近似根x0 ,则在x0附近f(x)可用一阶泰勒多项式近似代替.因此, 方程f(x)=0可近似地表示为p(x)=0。用x1表示p(x)=0的根,它与f(x)=0的根差异不大.
设 ,由于x1满足
解得
重复这一过程,得到迭代公式:
这就是著名的牛顿迭代公式,它相应的不动点方程为
线性方程组基本解法:
若方程组可同解变形为
Jaco