聚类分析

本文详细探讨了聚类分析的基本概念、常用算法及其在数据结构中的应用。通过实例解析,阐述了如何使用C语言实现聚类过程,包括K-means、层次聚类等方法,并讨论了它们的优缺点及适用场景。
摘要由CSDN通过智能技术生成

 

聚类分析(Cluster Analysis)
一、聚类分析与判别分析
• 判别分析:已知分类情况,将未知个体归入正确类别
• 聚类分析:分类情况未知,对数据结构进行分类
 
二、Q型和R型 聚类
 
Q型是对样本进行分类处理,其作用在于:
1.能利用多个变量对样本进行分类
2.分类结果直观,聚类谱系图能明确、清楚地表达其数值分类结果
3.所得结果比传统的定性分类方法更细致、全面、合理
 
R型是对变量进行分类处理,其作用在于:
1.可以了解变量间及变量组合间的亲疏关系
2.可以根据变量的聚类结果及它们之间的关系,选择主要变量进行回归分析或Q型聚类分析
 
三、聚类过程
1.数据预处理(标准化)
2.构造关系矩阵(亲疏关系的描述)
3.聚类(根据不同方法进行分类)
4.确定最佳分类(类别数)
 
3.1 标准化:
3.1.1为什么要做标准化: 指标变量的量纲不同或数量级相差很大,为了使这些数据能放到一起加以比较,常需做变换。
3.1.2相关说明:假设有N个样本1,2,…n,每个样本有m项指标x 1, x 2,…,x m,用 x ij表示第i个样品第j个指标的值,则可得到样品数据矩阵。
          
均值表示为 ,标准差为 ,极差为
3.1.3 常用方法 
1)Z Scores:标准化变换
作用:变换后的数据均值为0,标准差为1,消去了量纲的影响;当抽样样本改变时,它仍能保持相对稳定性。
 
2)Range –1 to 1:极差标准化变换
 
作用:变换后的数据均值为0,极差为1,且| xij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。
3)Maximum magnitude of 1
作用:变换后的数据最大值为1。
4)Range 0 to 1(极差正规化变换 / 规格化变换)
作用:变换后的数据最小为0,最大为1,其余在区间[0,1]内,极差为1,无量纲。
5)Mean of 1
作用:变换后的数据均值为1。
6)Standard  deviation  of  1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值