[ML] 多任务学习以及流行正则化

Andrew Zhang
May 24, 2016

线性回归容易因为过拟合而出现高方差,因此为了控制模型复杂度往往在线性回归的时候添加很多正则项,众所周知的就有 L0,L1,L2 L1 范式效果是使得参数每一项的值向0缩减,而 L0,L2 范式则是通过将一些参数的权值归零来缩减特征的个数。

一、多任务学习的提出
在多任务学习中,每一个任务下数据特征的维数相等,并且对应于相同的意义。
基于 L1 范式可以缩减特征的性质,Multi-task feature learning via efficient l2, 1-norm minimization这篇文章将其扩展到了多任务学习中。
其中使用的目标函数表达式为
minW12kj=1||yjAjwj||2+ρ||W||2,1(1-1)
其中 wjRn×1 相当于普通线性回归里面的权重, W=[w1,w2,...,wk]n×k , ||W||2,1=ni=1||wi|| ,而 wi=[Wi,1,Wi,2,...,Wi,k] 。这里相当于对参数矩阵 W 进行了一次按行稀疏化,也就是按行进行特征选择。

二、多任务学习之任务间正则化约束
考虑到不同任务间的数据表示的是同一个状态,Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification这篇文章提出了对任务间的特征进行流形相似度约束,即利用当前该任务的线性回归权重wj对该任务下的特征进行映射,要求对于同一个样本不同任务下映射后的点的距离要相近。即
D=ni=1mj=1mk=1,kj||xjiwjxkiwk||2F||xjixki||2F(2-1)
再加上多任务学习的约束条件,这篇文章的总的约束目标函数就是
minwmj=1||Xjwjyj||2F+λ1||W||2,1+λ2D(2-2)
其中 n 表示样本个数,m表示任务个数,其它表示方式虽有不同但类似不再详述。

三、多任务学习之样本间正则化约束
以往的的话如果仅仅有一个任务下采集到的数据,我们往往对单个任务下的数据建立分类模型,Manifold regularized multitask feature learning for multimodality disease classification这篇文章与上一篇类似,利用对应任务下线性回归的参数 wj ,将这个任务下的特征进行映射,要求对于同一个任务来说,映射后这个任务下类别相同的点映射后应该离得尽量近。所以有如下的正则化约束因子,
minWMm1Ni,jSmij||f(xmi)f(xmj)||22(3-1)
并且公式(3-1)等价于
minw2Mm=1(Xmwm)TLm(Xmwm)(3-2)
其中如果 xmi xmj 同一类的话 Smij=1 否则 Smij=0 .对于公式(3-1)化简得到的公式(3-2)主要说说这个 Lm ,容易发现
Lm=DmSm(3-3)
其中 Dm 是一个对角矩阵, Dmii=Nj=1Smij
这样在结合多任务学习的经典公式(1-1)就得到这篇文章里面的目标约公式了
minW12Mm=1||ΥXmwm||22+β||W||2,1+γMm=1(Xmwm)TLm(Xmwm)(3-4)
这篇文章在到这儿以后并没有结束,而是基于公式(3-3)的几何意义,将其扩展到了半正定的情况。其中,修改后的
Smij=exp(dist(xmi,xmj)/t)(3-5)
对角矩阵变为了有标签的为1,无标签的为0.

四、多任务学习的分类器—多核学习
对于多任务数据,可以利用SVM对不同的任务分别建立核函数然后进行分类,这个就不再说了,具体可以参考我的SVM相关博客,也可以参考最后一篇参考论文。

参考论文:
1. Multi-task feature learning via efficient l2, 1-norm minimization
2. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification
3. Manifold regularized multitask feature learning for multimodality disease classification
4. Ensemble sparse classification of Alzheimer’s disease

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值