HALCON和OPENCV最终选择了后者

博主分享了在图像识别项目中,对比HALCON和OpenCV的经验。HALCON的图形化工具和丰富的算子库使其易用性突出,但对Python支持不足,尤其在镜头畸变校正上的缺失成为放弃的理由。相比之下,尽管OpenCV需要自实现部分算法且速度较慢,其开源特性和Python兼容性使其成为更实际的选择。目前项目已实现圆形和矩形检测,满足大部分需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经过一段时间的评估,还是放弃了HALCON,HALCON有很多算子使用很方便,直接调用即可,还有很多图形化的工具,直接就可以调节参数,并看到结果。运行的中间变量也会有直观的图形可供查看
在这里插入图片描述
还有很多现成的实例演示,很容易上手。

在这里插入图片描述
而OPENCV的很多算法需要自己实现。所有的变量都不直观。

为啥我还是放弃了?原因很简单,Halcon对Python支持很不好,虽然说支持Python,但实测发现,其并不支持镜头畸变校正。在Halcon中调试好的代码,移植到Python中以后,即使经过畸变校正,输出的图像仍然与畸变校正之前的一模一样。有成功的道友请在留言区回复一下成功的方法。不知道是不是我忽略了某个环节。
做图像识别,却不支持镜头的畸变校正,只能放弃。

而opencv虽然没有那么好用,但是开源啊,没有软件成本啊。只是需要把算法搞定,还有一个问题,自己做算法速度会比较慢,毕竟Python的慢,是天下共识。好在项目中并没有要求高速识别,现在的识别速度能到14帧,也基本够用了吧。

下面是原图和畸变校正图的比较
在这里插入图片描述

在这里插入图片描述

目前已经实现圆形和矩形检测,足够应付大多数情况了。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老李的森林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值