💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源:
摘要:
多模态传感器数据融合利用各传感器提供的互补或增强信息,在场景分类和目标检测等应用中可以提升整体性能。本文提出了一种新的方法,用于融合多模态和多分辨率的遥感数据,而无需像素级训练标签,这在实践中可能难以获得。之前,我们开发了一个解决融合中标签不确定性的多实例多分辨率融合(MIMRF)框架,但由于用于整合传感器数据源的模糊度量的大搜索空间,训练速度可能较慢。我们提出了一种基于二进制模糊度量的新方法,它减小了搜索空间并显著提高了MIMRF框架的效率。我们在合成数据和真实的遥感检测任务上展示了实验结果,并表明提出的MIMRF-BFM算法可以有效且高效地处理带有不确定性的遥感数据进行多分辨率融合。
📚2 运行结果
部分代码:
%%%%%%% If no mex file existed in the ./util folder, run the following two lines to compile mex file %%%%%%%
% mex computeci.c
% mex ismember_findrow_mex.c
%% The MU Fusion demo
%%%%%%% Generate a simulated multiresolution "MU" data set.
%%%%%%% The goal is to detect/highlight the letters "M" and "U" in the scene.
[Bags, Labels, Seg] = generateSimData_MU();
%%%%%%% Training Stage: Learn measures given training Bags and Labels
[Parameters] = learnCIMeasureParams(); %user-set MIMRF parameters
[measure_MIMRF, initialMeasure_MIMRF, Analysis_MIMRF] = learnCIMeasure_minmax_multires(Bags, Labels, Parameters);%noisy-or model
%%%%%%% Testing Stage: Given the learned measures above, compute and plot fusion results
[TestConfMap] = computeTestMap(Bags, Labels, measure_MIMRF, Seg);
load('demo_MultiRes_data_MU.mat')
figure(101);
set(gcf, 'Position', get(0, 'Screensize'));
subplot(1,2,1);imagesc(Img);title('True Labels')
subplot(1,2,2);imagesc(TestConfMap);colorbar;title('MIMRF Fusion result')
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。