【多变量输入超前多步预测】基于BiLSTM的光伏功率预测研究(Matlab代码实现)

                            💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、多变量输入

二、超前多步预测

三、研究流程与关键技术

四、优势与挑战

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

【多变量输入超前多步预测】基于BiLSTM(双向长短期记忆网络)的光伏功率预测研究,是当前光伏发电领域的一个热点。BiLSTM模型通过其独特的双向处理能力和长短期记忆机制,在处理多变量输入和进行超前多步预测时展现出了显著的优势。以下是对该研究领域的详细分析:

一、多变量输入

在光伏功率预测中,多变量输入意味着模型会同时考虑多种与光伏功率输出相关的变量作为输入特征。这些变量包括但不限于:

  • 太阳辐射强度:直接影响光伏板的能量转换效率。
  • 温度:影响光伏电池的性能和效率。
  • 风速与风向:与云量相关,间接影响太阳辐射强度。
  • 湿度:可能影响光伏板表面的清洁度和能量转换效率。
  • 大气压:有时也与天气状况相关,间接影响光伏功率输出。
  • 历史功率数据:反映光伏系统的历史运行状态和变化趋势。

通过引入多变量输入,BiLSTM模型能够更全面地捕捉光伏功率输出的影响因素,从而提高预测的准确性和鲁棒性。在实际应用中,需要根据数据的可获取性和相关性来选择合适的输入变量,并通过数据预处理步骤确保输入数据的质量。

二、超前多步预测

超前多步预测是指在当前时间点预测未来多个时间点的光伏功率输出。这对于电力系统的调度和运行至关重要,因为它可以帮助调度人员提前制定计划,优化资源配置,减少不确定性和风险。

BiLSTM模型通过其双向处理能力和长短期记忆机制,能够有效地捕捉时间序列数据中的复杂依赖关系。在光伏功率预测中,这意味着BiLSTM模型可以学习历史数据中的模式和趋势,并据此预测未来多个时间点的功率输出。与传统的单向LSTM模型相比,BiLSTM模型能够同时考虑过去和未来的信息,从而在超前多步预测中表现出更高的准确性。

三、研究流程与关键技术

基于BiLSTM的光伏功率预测研究通常包括以下几个关键步骤:

  1. 数据收集与预处理:收集历史气象数据、光伏系统运行数据等多变量输入数据,并进行数据清洗、归一化等预处理操作,以提高数据质量和模型的训练效率。

  2. 特征选择与提取:根据相关性分析和领域知识,选择对光伏功率输出影响较大的变量作为输入特征。在特征提取阶段,可以利用PCA(主成分分析)、KNN(K近邻算法)等方法进一步筛选和重构特征数据。

  3. BiLSTM模型构建:设计BiLSTM网络结构,包括确定BiLSTM层的数量、隐藏单元的数量等参数,以及选择合适的激活函数和优化算法。同时,还可以结合其他深度学习模型(如CNN、Attention机制等)来进一步提升预测性能。

  4. 模型训练:使用历史数据对BiLSTM模型进行训练,通过反向传播算法优化模型参数,以最小化预测误差。在训练过程中,可以采用交叉验证、早停法等技术来防止过拟合问题。

  5. 模型验证与评估:使用独立的测试数据集对训练好的模型进行验证和评估。评估指标通常包括均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R²)等。通过与其他预测模型(如LSTM、SVM、ARIMA等)的对比实验,可以验证BiLSTM模型在光伏功率预测中的优越性。

  6. 预测与结果分析:利用训练好的BiLSTM模型进行超前多步预测,并对预测结果进行分析和解释。根据预测结果,可以对电力系统的调度和运行提出相应的优化建议。

四、优势与挑战

基于BiLSTM的光伏功率预测研究具有以下优势:

  • 能够捕捉复杂依赖关系:BiLSTM模型通过其双向处理能力和长短期记忆机制,能够有效地捕捉时间序列数据中的复杂依赖关系,提高预测精度。
  • 适用于多变量输入:BiLSTM模型可以灵活地处理多变量输入数据,提高预测的准确性和全面性。
  • 具备超前多步预测能力:通过训练和优化BiLSTM模型,可以实现对光伏功率的超前多步预测,为电力系统的调度和运行提供有力支持。

然而,该研究也面临一些挑战:

  • 数据质量要求高:高质量的数据是训练准确BiLSTM模型的基础。在实际应用中,数据往往存在噪声、缺失等问题,需要进行有效的数据预处理和特征选择。
  • 模型复杂度较高:BiLSTM模型结构相对复杂,参数数量较多,对计算资源的要求也较高。在实际应用中,需要根据具体情况选择合适的模型规模和训练策略。
  • 预测不确定性:由于光伏功率输出受到多种不确定因素的影响(如天气突变等),因此预测结果仍存在一定的不确定性。在实际应用中,需要结合其他信息来源和专家经验来综合判断预测结果的可靠性。

综上所述,基于BiLSTM的光伏功率预测研究在采用多变量输入和超前多步预测策略时展现出了显著的优势和潜力。未来随着技术的不断进步和数据质量的提升,相信这一研究领域将取得更加丰硕的成果。

📚2 运行结果

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]史凯钰,张东霞,韩肖清,等.基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J].电网技术, 2022(004):046.DOI:10.13335/j.1000-3673.pst.2021.0738.

[2]吉锌格,李慧,刘思嘉,等.基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制, 2020, 48(7):8.DOI:CNKI:SUN:JDQW.0.2020-07-006.

[3]刘兴霖,黄超,王龙,等.基于聚类和LSTM的光伏功率日前逐时鲁棒预测[J].计算机技术与发展, 2023, 33(3):120-126.DOI:10.3969/j.issn.1673-629X.2023.03.018.

[4]王东风,刘婧,黄宇,等.结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J].太阳能学报, 2024, 45(2):443-450.DOI:10.19912/j.0254-0096.tynxb.2022-1542.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值